Graded polynomial identities and codimensions: computing the exponential growth

Risultato della ricerca: Articlepeer review

41 Citazioni (Scopus)

Abstract

Let $G$ be a finite abelian group and $A$ a $G$-graded algebra over a fieldof characteristic zero. This paper is devoted to a quantitative study of the graded polynomial identitiessatisfied by $A$. We study the asymptotic behavior of $c_n^G(A), \ n=1,2, \ldots,$ the sequence of graded codimensions of $A$ and we prove that if $A$ satisfies an ordinary polynomial identity, $\lim_{n\to \infty}\sqrt[n]{c_n^G(A)}$ exists and is an integer. We give an explicitway of computing such integer by proving that it equals the dimension of a suitable finite dimension semisimple $G\times \mathbb{Z}_2$-graded algebra related to$A$.
Lingua originaleEnglish
pagine (da-a)859-881
Numero di pagine23
RivistaAdvances in Mathematics
Volume225
Stato di pubblicazionePublished - 2010

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???

Fingerprint

Entra nei temi di ricerca di 'Graded polynomial identities and codimensions: computing the exponential growth'. Insieme formano una fingerprint unica.

Cita questo