Abstract
In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the characterisation of quantum phase transitions, we describe recent developments of geometrical approaches based on mixed-state generalisation of the Berry-phase, i.e. the Uhlmann geometric phase, for the investigation of non-equilibrium steady-state quantum phase transitions (NESS-QPTs ). Equilibrium phase transitions fall invariably into two markedly non-overlapping categories: classical phase transitions and quantum phase transitions, whereas in NESS-QPTs this distinction may fade off. The approach described in this review, among other things, can quantitatively assess the quantum character of such critical phenomena. This framework is applied to a paradigmatic class of lattice Fermion systems with local reservoirs, characterised by Gaussian non-equilibrium steady states. The relations between the behaviour of the geometric phase curvature, the divergence of the correlation length, the character of the criticality and the gap – either Hamiltonian or dissipative – are reviewed.
Lingua originale | English |
---|---|
pagine (da-a) | 1-72 |
Numero di pagine | 72 |
Rivista | Physics Reports |
Volume | 838 |
Stato di pubblicazione | Published - 2020 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.3100.3100???