TY - JOUR
T1 - Genome- wide analyses reveal population structure and identify candidate genes associated with tail fatness in local sheep from a semi- arid area
AU - Mastrangelo, Salvatore
AU - Bedhiaf-Romdhani, null
AU - Ciani, null
AU - Baazaoui, null
PY - 2021
Y1 - 2021
N2 - Under a climate change perspective, the genetic make-up of local livestock breeds showing adaptive traits should be explored and preserved as a priority. We used genotype data from the ovine 50 k Illumina BeadChip for assessing breed autozygosity based on runs of homozygosity (ROH) and fine-scale genetic structure and for detecting genomic regions under selection in 63 Tunis ia n sheep samples. The average genomic inbreeding coefficients based on ROH were estimated at 0.017, 0.021, and 0.024 for Barbarine (BAR, n = 26), Noire de Thibar (NDT, n = 23), and Queue fine de l'Ouest (QFO, n = 14) breeds, respectively. The genomic relationships among individuals based on identity by state (IBS) distance matrix highlighted a recent introgression of QFO into the BAR and a genetic differentiation of NDT samples, possibly explained by past introgression of Europe an gene pools. Genome-wide scan for ROH across breeds and within the BAR sample set identified an outstanding signal on chromosome 13 (46.58–49.61 Mbp). These results were confirmed using FST index, differentiating fat vs. thin-tailed individuals. Candidate genes under selection pressure (CDS2, PROKR1, and BMP2) were associated to lipid storage and probably preferentially selected in fat-tailed BAR animals. Our findings suggest paying more attention to preserve the genetic integrity and adaptive alleles of local sheep breeds.
AB - Under a climate change perspective, the genetic make-up of local livestock breeds showing adaptive traits should be explored and preserved as a priority. We used genotype data from the ovine 50 k Illumina BeadChip for assessing breed autozygosity based on runs of homozygosity (ROH) and fine-scale genetic structure and for detecting genomic regions under selection in 63 Tunis ia n sheep samples. The average genomic inbreeding coefficients based on ROH were estimated at 0.017, 0.021, and 0.024 for Barbarine (BAR, n = 26), Noire de Thibar (NDT, n = 23), and Queue fine de l'Ouest (QFO, n = 14) breeds, respectively. The genomic relationships among individuals based on identity by state (IBS) distance matrix highlighted a recent introgression of QFO into the BAR and a genetic differentiation of NDT samples, possibly explained by past introgression of Europe an gene pools. Genome-wide scan for ROH across breeds and within the BAR sample set identified an outstanding signal on chromosome 13 (46.58–49.61 Mbp). These results were confirmed using FST index, differentiating fat vs. thin-tailed individuals. Candidate genes under selection pressure (CDS2, PROKR1, and BMP2) were associated to lipid storage and probably preferentially selected in fat-tailed BAR animals. Our findings suggest paying more attention to preserve the genetic integrity and adaptive alleles of local sheep breeds.
KW - Fat tail
KW - Genetic structure
KW - Local sheep
KW - Runs of homozygosity
KW - Selection signatures
KW - Fat tail
KW - Genetic structure
KW - Local sheep
KW - Runs of homozygosity
KW - Selection signatures
UR - http://hdl.handle.net/10447/493158
M3 - Article
JO - Animal
JF - Animal
SN - 1751-7311
ER -