Functionalized Halloysite for enhanced removal of toxic metal ions from aqueous solutions

Risultato della ricerca: Other

Abstract

During the last years several nanomaterials have been extensively used in the heavy metal ions removal from aqueous solutions. Among them, clay minerals have gathered particular interest owing to their unique features (e.g., high specific surface area, low toxicity and natural availability at low price). Halloysite nanotubes (Hal) are particular clay minerals with a predominantly hollow tubular structure. In this work Hal and their derivatives, Hal-NH2 and Hal-SH, were used as adsorbent materials of lead(II) and mercury(II) ions from aqueous solutions. The adsorption ability of clay nanomaterials towards toxic metal ions has been studied takeing into account important variables of the metal ion solution (e.g., ionic medium, ionic strength, pH, etc.). The Kinetic and the thermodyamic of the metal adsorption were evaluated by using the Differential Pulse Anodic Stripping Voltammetry (DP-ASV) and the Inductively coupled plasma – optical emission specrtoscopy techniques to check the metal ion concentration in the solutions. Several equilibrium and kinetic equations were used to fit the experimental data. The speciation of metal ion solutions together with the characterization of the adsorbents were considered in order to establish the mechanism of metal ion removal. The collected data showed that the functionalization enhances the adsorption ability of Halloysite and makes the nanoclay mineral a good candidate as adsorbent of toxic metal ion from aqueous solutions.
Lingua originaleEnglish
Pagine103-103
Numero di pagine1
Stato di pubblicazionePublished - 2018

Fingerprint

Poisons
Metal ions
Adsorbents
Clay minerals
Nanostructured materials
Adsorption
Kinetics
Inductively coupled plasma
Voltammetry
Heavy Metals
clay
Ionic strength
Mercury
Heavy ions
Specific surface area
Nanotubes
Minerals
Toxicity
Metals
Availability

Cita questo

@conference{83189f130df5433cb45fb7e9602d4179,
title = "Functionalized Halloysite for enhanced removal of toxic metal ions from aqueous solutions",
abstract = "During the last years several nanomaterials have been extensively used in the heavy metal ions removal from aqueous solutions. Among them, clay minerals have gathered particular interest owing to their unique features (e.g., high specific surface area, low toxicity and natural availability at low price). Halloysite nanotubes (Hal) are particular clay minerals with a predominantly hollow tubular structure. In this work Hal and their derivatives, Hal-NH2 and Hal-SH, were used as adsorbent materials of lead(II) and mercury(II) ions from aqueous solutions. The adsorption ability of clay nanomaterials towards toxic metal ions has been studied takeing into account important variables of the metal ion solution (e.g., ionic medium, ionic strength, pH, etc.). The Kinetic and the thermodyamic of the metal adsorption were evaluated by using the Differential Pulse Anodic Stripping Voltammetry (DP-ASV) and the Inductively coupled plasma – optical emission specrtoscopy techniques to check the metal ion concentration in the solutions. Several equilibrium and kinetic equations were used to fit the experimental data. The speciation of metal ion solutions together with the characterization of the adsorbents were considered in order to establish the mechanism of metal ion removal. The collected data showed that the functionalization enhances the adsorption ability of Halloysite and makes the nanoclay mineral a good candidate as adsorbent of toxic metal ion from aqueous solutions.",
author = "Alberto Pettignano and Marina Massaro and Serena Riela and Salvatore Cataldo",
year = "2018",
language = "English",
pages = "103--103",

}

TY - CONF

T1 - Functionalized Halloysite for enhanced removal of toxic metal ions from aqueous solutions

AU - Pettignano, Alberto

AU - Massaro, Marina

AU - Riela, Serena

AU - Cataldo, Salvatore

PY - 2018

Y1 - 2018

N2 - During the last years several nanomaterials have been extensively used in the heavy metal ions removal from aqueous solutions. Among them, clay minerals have gathered particular interest owing to their unique features (e.g., high specific surface area, low toxicity and natural availability at low price). Halloysite nanotubes (Hal) are particular clay minerals with a predominantly hollow tubular structure. In this work Hal and their derivatives, Hal-NH2 and Hal-SH, were used as adsorbent materials of lead(II) and mercury(II) ions from aqueous solutions. The adsorption ability of clay nanomaterials towards toxic metal ions has been studied takeing into account important variables of the metal ion solution (e.g., ionic medium, ionic strength, pH, etc.). The Kinetic and the thermodyamic of the metal adsorption were evaluated by using the Differential Pulse Anodic Stripping Voltammetry (DP-ASV) and the Inductively coupled plasma – optical emission specrtoscopy techniques to check the metal ion concentration in the solutions. Several equilibrium and kinetic equations were used to fit the experimental data. The speciation of metal ion solutions together with the characterization of the adsorbents were considered in order to establish the mechanism of metal ion removal. The collected data showed that the functionalization enhances the adsorption ability of Halloysite and makes the nanoclay mineral a good candidate as adsorbent of toxic metal ion from aqueous solutions.

AB - During the last years several nanomaterials have been extensively used in the heavy metal ions removal from aqueous solutions. Among them, clay minerals have gathered particular interest owing to their unique features (e.g., high specific surface area, low toxicity and natural availability at low price). Halloysite nanotubes (Hal) are particular clay minerals with a predominantly hollow tubular structure. In this work Hal and their derivatives, Hal-NH2 and Hal-SH, were used as adsorbent materials of lead(II) and mercury(II) ions from aqueous solutions. The adsorption ability of clay nanomaterials towards toxic metal ions has been studied takeing into account important variables of the metal ion solution (e.g., ionic medium, ionic strength, pH, etc.). The Kinetic and the thermodyamic of the metal adsorption were evaluated by using the Differential Pulse Anodic Stripping Voltammetry (DP-ASV) and the Inductively coupled plasma – optical emission specrtoscopy techniques to check the metal ion concentration in the solutions. Several equilibrium and kinetic equations were used to fit the experimental data. The speciation of metal ion solutions together with the characterization of the adsorbents were considered in order to establish the mechanism of metal ion removal. The collected data showed that the functionalization enhances the adsorption ability of Halloysite and makes the nanoclay mineral a good candidate as adsorbent of toxic metal ion from aqueous solutions.

UR - http://hdl.handle.net/10447/326811

M3 - Other

SP - 103

EP - 103

ER -