TY - JOUR
T1 - Functional characterization of a novel 3D model of the epithelial-mesenchymal trophic unit
AU - Fucarino, Alberto Giuseppe
AU - Pitruzzella, Alessandro
AU - Marino Gammazza, Antonella
AU - Bucchieri, Fabio
AU - Cajozzo, Massimo
AU - Caruso Bavisotto, Celeste
AU - Zummo, Giovanni
AU - Gammazza, Antonella Marino
AU - Pitruzzella, Alessandro
AU - Fucarino, Alberto
AU - Bavisotto, Celeste Caruso
AU - Bucchieri, Fabio
AU - Holgate, Stephen T.
AU - Davies, Donna E.
AU - Marchese, Roberto
AU - Marciano', Vito
PY - 2017
Y1 - 2017
N2 - AbstractBACKGROUND/AIM:Epithelial-mesenchymal communication plays a key role in tissue homeostasis and abnormal signaling contributes to chronic airways disease such as COPD. Most in vitro models are limited in complexity and poorly represent this epithelial-mesenchymal trophic unit. We postulated that cellular outgrowth from bronchial tissue would enable development of a mucosal structure that recapitulates better in vivo tissue architecture.MATERIALS AND METHODS:Bronchial tissue was embedded in Matrigel and outgrowth cultures monitored using time-lapse microscopy, electrical resistance, light and electron microscopy. Cultures were challenged repetitively with cigarette smoke extract (CSE).RESULTS:The outgrowths formed as a multicellular sheet with motile cilia becoming evident as the Matrigel was remodeled to provide an air interface; cultures were viable for more than one year. Immunofluorescence and electron microscopy (EM) identified an upper layer of mucociliary epithelium and a lower layer of highly organized extracellular matrix (ECM) interspersed with fibroblastic cells separated by a basement membrane. EM analysis of the mucosal construct after repetitive exposure to CSE revealed epithelial damage, loss of cilia, and ECM remodeling, as occurs in vivo.CONCLUSIONS:We have developed a robust bronchial mucosal model. The structural changes observed following CSE exposure suggest the model should have utility for drug discovery and preclinical testing, especially those targeting airway remodeling.
AB - AbstractBACKGROUND/AIM:Epithelial-mesenchymal communication plays a key role in tissue homeostasis and abnormal signaling contributes to chronic airways disease such as COPD. Most in vitro models are limited in complexity and poorly represent this epithelial-mesenchymal trophic unit. We postulated that cellular outgrowth from bronchial tissue would enable development of a mucosal structure that recapitulates better in vivo tissue architecture.MATERIALS AND METHODS:Bronchial tissue was embedded in Matrigel and outgrowth cultures monitored using time-lapse microscopy, electrical resistance, light and electron microscopy. Cultures were challenged repetitively with cigarette smoke extract (CSE).RESULTS:The outgrowths formed as a multicellular sheet with motile cilia becoming evident as the Matrigel was remodeled to provide an air interface; cultures were viable for more than one year. Immunofluorescence and electron microscopy (EM) identified an upper layer of mucociliary epithelium and a lower layer of highly organized extracellular matrix (ECM) interspersed with fibroblastic cells separated by a basement membrane. EM analysis of the mucosal construct after repetitive exposure to CSE revealed epithelial damage, loss of cilia, and ECM remodeling, as occurs in vivo.CONCLUSIONS:We have developed a robust bronchial mucosal model. The structural changes observed following CSE exposure suggest the model should have utility for drug discovery and preclinical testing, especially those targeting airway remodeling.
UR - http://hdl.handle.net/10447/230055
M3 - Article
VL - 43
SP - 82
EP - 92
JO - Experimental Lung Research
JF - Experimental Lung Research
SN - 0190-2148
ER -