Fluid-structure interaction and flow redistribution in membrane-bounded channels

Risultato della ricerca: Articlepeer review

5 Citazioni (Scopus)


The hydrodynamics of electrodialysis and reverse electrodialysis is commonly studied by neglecting membrane deformation caused by transmembrane pressure (TMP). However, large frictional pressure drops and differences in fluid velocity or physical properties in adjacent channels may lead to significant TMP values. In previous works, we conducted one-way coupled structural-CFD simulations at the scale of one periodic unit of a profiled membrane/channel assembly and computed its deformation and frictional characteristics as functions of TMP. In this work, a novel fluid-structure interaction model is presented, which predicts, at the channel pair scale, the changes in flow distribution associated with membrane deformations. The continuity and Darcy equations are solved in two adjacent channels by treating them as porous media and using the previous CFD results to express their hydraulic permeability as a function of the local TMP. Results are presented for square stacks of 0.6-m sides in cross and counter flow at superficial velocities of 1 to 10 cm/s. At low velocities, the corresponding low TMP does not significantly affect the flow distribution. As the velocity increases, the larger membrane deformation causes significant fluid redistribution. In the cross flow, the departure of the local superficial velocity from a mean value of 10 cm/s ranges between -27% and +39%.
Lingua originaleEnglish
pagine (da-a)4259-
Numero di pagine25
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2200.2215???
  • ???subjectarea.asjc.2200.2201???
  • ???subjectarea.asjc.2100.2105???
  • ???subjectarea.asjc.2100.2103???
  • ???subjectarea.asjc.2100.2102???
  • ???subjectarea.asjc.2100.2101???
  • ???subjectarea.asjc.2600.2606???
  • ???subjectarea.asjc.2200.2208???


Entra nei temi di ricerca di 'Fluid-structure interaction and flow redistribution in membrane-bounded channels'. Insieme formano una fingerprint unica.

Cita questo