Extremal solutions and strong relaxation for nonlinear multivalued systems with maximal monotone terms

Calogero Vetro, Francesca Vetro, Nikolaos S. Papageorgiou

Risultato della ricerca: Article

4 Citazioni (Scopus)

Abstract

We consider differential systems in R^N driven by a nonlinear nonhomogeneous second order differential operator, a maximal monotone term and a multivalued perturbation F(t,u,u'). For periodic systems we prove the existence of extremal trajectories, that is solutions of the system in which F(t,u,u') is replaced by extF(t,u,u') (= the extreme points of F(t,u,u')). For Dirichlet systems we show that the extremal trajectories approximate the solutions of the "convex" problem in the C^1(T,R^N)-norm (strong relaxation).
Lingua originaleEnglish
pagine (da-a)401-421
Numero di pagine21
RivistaJournal of Mathematical Analysis and Applications
Volume461
Stato di pubblicazionePublished - 2018

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Extremal solutions and strong relaxation for nonlinear multivalued systems with maximal monotone terms'. Insieme formano una fingerprint unica.

  • Cita questo