Experimental results from Al/p-CdTe/Pt X-ray detectors

Risultato della ricerca: Article

19 Citazioni (Scopus)

Abstract

Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm3). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at -25 °C under a bias voltage of -1000 V. The spectroscopic performance of the detectors at both low and high photon counting rates were also investigated with a focus on the minimization of time instability, generally termed as polarization, looking for the optimum bias voltage and temperature. Good time stability, during a long-term operation of 10 h, was observed for both detectors at -25 °C and by using an electric field of 5000 V/cm. The 2 mm thick detector exhibited good energy resolution of 6.1%, 2.5% and 2.0% (FWHM) at 22.1 keV, 59.5 and 122.1 keV, respectively. Performance enhancements were obtained by using digital pulse processing techniques, especially at high photon counting rates (300 kcps). The 2 mm thick detector, after a digital pulse shape correction (PSC), is characterized by similar performance to the thin detector ones, opening up to the use of thick CdTe detectors without excessive performance degradations. This work was carried out in the framework of the development of portable X-ray spectrometers for both laboratory research and medical applications.
Lingua originaleEnglish
pagine (da-a)135-140
Numero di pagine6
RivistaNUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT
Volume730
Stato di pubblicazionePublished - 2013

Fingerprint

Detectors
X rays
detectors
x rays
X ray spectrometers
Bias voltage
Leakage currents
counting
leakage
Photons
Electric fields
spectrometers
electric fields
photons
Medical applications
electric potential
Research laboratories
Full width at half maximum
pulses
Charge carriers

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Instrumentation

Cita questo

@article{ea3d5e02bd0c4d0697427548e523645d,
title = "Experimental results from Al/p-CdTe/Pt X-ray detectors",
abstract = "Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm3). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at -25 °C under a bias voltage of -1000 V. The spectroscopic performance of the detectors at both low and high photon counting rates were also investigated with a focus on the minimization of time instability, generally termed as polarization, looking for the optimum bias voltage and temperature. Good time stability, during a long-term operation of 10 h, was observed for both detectors at -25 °C and by using an electric field of 5000 V/cm. The 2 mm thick detector exhibited good energy resolution of 6.1{\%}, 2.5{\%} and 2.0{\%} (FWHM) at 22.1 keV, 59.5 and 122.1 keV, respectively. Performance enhancements were obtained by using digital pulse processing techniques, especially at high photon counting rates (300 kcps). The 2 mm thick detector, after a digital pulse shape correction (PSC), is characterized by similar performance to the thin detector ones, opening up to the use of thick CdTe detectors without excessive performance degradations. This work was carried out in the framework of the development of portable X-ray spectrometers for both laboratory research and medical applications.",
keywords = "CdTe detectors; Digital pulse processing; X-ray and gamma ray spectroscopy; High photon counting rate",
author = "Gaetano Gerardi and Fabio Principato and Leonardo Abbene and Turturici, {Accursio Antonio} and Abbene and {Del Sordo}",
year = "2013",
language = "English",
volume = "730",
pages = "135--140",
journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
issn = "0168-9002",
publisher = "Elsevier",

}

TY - JOUR

T1 - Experimental results from Al/p-CdTe/Pt X-ray detectors

AU - Gerardi, Gaetano

AU - Principato, Fabio

AU - Abbene, Leonardo

AU - Turturici, Accursio Antonio

AU - Abbene, null

AU - Del Sordo, null

PY - 2013

Y1 - 2013

N2 - Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm3). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at -25 °C under a bias voltage of -1000 V. The spectroscopic performance of the detectors at both low and high photon counting rates were also investigated with a focus on the minimization of time instability, generally termed as polarization, looking for the optimum bias voltage and temperature. Good time stability, during a long-term operation of 10 h, was observed for both detectors at -25 °C and by using an electric field of 5000 V/cm. The 2 mm thick detector exhibited good energy resolution of 6.1%, 2.5% and 2.0% (FWHM) at 22.1 keV, 59.5 and 122.1 keV, respectively. Performance enhancements were obtained by using digital pulse processing techniques, especially at high photon counting rates (300 kcps). The 2 mm thick detector, after a digital pulse shape correction (PSC), is characterized by similar performance to the thin detector ones, opening up to the use of thick CdTe detectors without excessive performance degradations. This work was carried out in the framework of the development of portable X-ray spectrometers for both laboratory research and medical applications.

AB - Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm3). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at -25 °C under a bias voltage of -1000 V. The spectroscopic performance of the detectors at both low and high photon counting rates were also investigated with a focus on the minimization of time instability, generally termed as polarization, looking for the optimum bias voltage and temperature. Good time stability, during a long-term operation of 10 h, was observed for both detectors at -25 °C and by using an electric field of 5000 V/cm. The 2 mm thick detector exhibited good energy resolution of 6.1%, 2.5% and 2.0% (FWHM) at 22.1 keV, 59.5 and 122.1 keV, respectively. Performance enhancements were obtained by using digital pulse processing techniques, especially at high photon counting rates (300 kcps). The 2 mm thick detector, after a digital pulse shape correction (PSC), is characterized by similar performance to the thin detector ones, opening up to the use of thick CdTe detectors without excessive performance degradations. This work was carried out in the framework of the development of portable X-ray spectrometers for both laboratory research and medical applications.

KW - CdTe detectors; Digital pulse processing; X-ray and gamma ray spectroscopy; High photon counting rate

UR - http://hdl.handle.net/10447/84765

M3 - Article

VL - 730

SP - 135

EP - 140

JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

SN - 0168-9002

ER -