Existence and multiplicity of solutions for Dirichlet problems involving nonlinearities with arbitrary growth.

Francesco Tulone, Giovanni Anello

Risultato della ricerca: Articlepeer review

Abstract

In this article we study the existence and multiplicity of solutions for the Dirichlet problem $$\displaylines{ -\Delta_p u=\lambda f(x,u)+ \mu g(x,u)\quad\hbox{in }\Omega,\cr u=0\quad\hbox{on } \partial \Omega}$$where $\Omega$ is a bounded domain in $\mathbb{R}^N$, $f,g:\Omega \times \mathbb{R}\to \mathbb{R}$ are Caratheodory functions, and $\lambda,\mu$ are nonnegative parameters. We impose no growth condition at $\infty$ on the nonlinearities f,g. A corollary to our main result improves an existence result recently obtained by Bonanno via a critical point theorem for $C^1$ functionals which do not satisfy the usual sequential weak lower semicontinuity property.
Lingua originaleEnglish
pagine (da-a)1-7
Numero di pagine7
RivistaElectronic Journal of Differential Equations
Volume2014
Stato di pubblicazionePublished - 2014

All Science Journal Classification (ASJC) codes

  • Analysis

Fingerprint Entra nei temi di ricerca di 'Existence and multiplicity of solutions for Dirichlet problems involving nonlinearities with arbitrary growth.'. Insieme formano una fingerprint unica.

Cita questo