Abstract
We studied the emission of the O2 molecules embedded in fumed silica (amorphous silicon dioxide) nanoparticles differing for diameters and specific surface. By using a 1064 nm laser as a source we recorded both the O2 emission and the Raman signal of silica. Our experimental data show that the O2 emission/Raman signal (at 800cm-1) ratio decreases with increasing the specific surface both for the as received and the loaded samples. By performing a thermal treatment (600 °C for 2h) we modified the structure and the water content of the smallest nanoparticles without observing any significant change in the O2 emission/Raman signal ratio. Our data are explained by a shell model showing that the O2 emission is essentially due to the molecules entrapped in the core of the nanoparticles, whereas the contribution due to the surface shell, having a thickness of about 1 nm, is negligible because of its high content of Si-OH groups that introduce non-radiative relaxation channels or because of the very low content of molecules trapped in this thin region.
Lingua originale | English |
---|---|
pagine (da-a) | 2616-2622 |
Numero di pagine | 7 |
Rivista | JOURNAL OF PHYSICAL CHEMISTRY. C |
Volume | 117 |
Stato di pubblicazione | Published - 2013 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films