Energy harvesting by waste acid/base neutralization via bipolar membrane reverse electrodialysis

Risultato della ricerca: Articlepeer review

19 Citazioni (Scopus)


Bipolar Membrane Reverse Electrodialysis (BMRED) can be used to produce electricity exploiting acid-base neutralization, thus representing a valuable route in reusing waste streams. The present work investigates the performance of a lab-scale BMRED module under several operating conditions. By feeding the stack with 1 M HCl and NaOH streams, a maximum power density of ∼17Wm-2 was obtained at 100 A m-2 with a 10-triplet stack with a flow velocity of 1 cm s-1, while an energy density of ∼10 kWh m-3 acid could be extracted by a complete neutralization. Parasitic currents along feed and drain manifolds significantly affected the performance of the stack when equipped with a higher number of triplets. The apparent permselectivity at 1 M acid and base decreased from 93% with the five-triplet stack to 54% with the 38-triplet stack, which exhibited lower values (∼35% less) of power density. An important role may be played also by the presence of NaCl in the acidic and alkaline solutions. With a low number of triplets, the added salt had almost negligible effects. However, with a higher number of triplets it led to a reduction of 23.4-45.7% in power density. The risk of membrane delamination is another aspect that can limit the process performance. However, overall, the present results highlight the high potential of BMRED systems as a productive way of neutralizing waste solutions for energy harvesting.
Lingua originaleEnglish
pagine (da-a)5510-
Numero di pagine22
Stato di pubblicazionePublished - 2020

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2100.2105???
  • ???subjectarea.asjc.2100.2102???
  • ???subjectarea.asjc.2100.2101???
  • ???subjectarea.asjc.2600.2606???
  • ???subjectarea.asjc.2200.2208???


Entra nei temi di ricerca di 'Energy harvesting by waste acid/base neutralization via bipolar membrane reverse electrodialysis'. Insieme formano una fingerprint unica.

Cita questo