Emissive titanium dioxide nanoparticles synthesized py pulsed laser ablation in liquid phase

Risultato della ricerca: Paper

Abstract

The remarkable applications of TiO2 nanomaterials, including, e.g. photocatalysis and dye-sensitized solar cells, have inspired in the last two decades an extensive amount of research aimed at understanding the properties of these materials. Photoluminescence is scarcely used to probe the electronic properties of TiO2, because neither bulk or nanosized TiO2 commonly display room-temperature emission. In particular, the fundamental luminescence due to the recombination of the self-trapped exciton in anatase TiO2 is typically observed only at low temperatures. We report the synthesis of luminescent titanium dioxide nanoparticles (NPs) by pulsed laser ablation of titanium in aqueous solution. The ablation procedure yields a colloidal solution of nano-sized TiO2 in a mixture of the anatase and rutile forms, as verified by Raman measurements. Atomic force microscopy shows that the average size of the primary NPs is about 4 nm. Their absorption spectrum in water features a fundamental threshold at about 3.5 eV, slightly blue-shifted with respect to the characteristic value of bulk TiO2. Interestingly, photo-excitation in the UV gives rise to an emission band centered at 420 nm with a lifetime of about 6 ns. More experiments are being carried out to identify the nature of the emitting electronic transition.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2013

Fingerprint

titanium oxides
anatase
laser ablation
pulsed lasers
liquid phases
nanoparticles
photoexcitation
electronics
rutile
ablation
titanium
solar cells
dyes
excitons
atomic force microscopy
luminescence
aqueous solutions
absorption spectra
photoluminescence
life (durability)

Cita questo

@conference{951e63aa8d7441ee92e44c9b58b2a4e2,
title = "Emissive titanium dioxide nanoparticles synthesized py pulsed laser ablation in liquid phase",
abstract = "The remarkable applications of TiO2 nanomaterials, including, e.g. photocatalysis and dye-sensitized solar cells, have inspired in the last two decades an extensive amount of research aimed at understanding the properties of these materials. Photoluminescence is scarcely used to probe the electronic properties of TiO2, because neither bulk or nanosized TiO2 commonly display room-temperature emission. In particular, the fundamental luminescence due to the recombination of the self-trapped exciton in anatase TiO2 is typically observed only at low temperatures. We report the synthesis of luminescent titanium dioxide nanoparticles (NPs) by pulsed laser ablation of titanium in aqueous solution. The ablation procedure yields a colloidal solution of nano-sized TiO2 in a mixture of the anatase and rutile forms, as verified by Raman measurements. Atomic force microscopy shows that the average size of the primary NPs is about 4 nm. Their absorption spectrum in water features a fundamental threshold at about 3.5 eV, slightly blue-shifted with respect to the characteristic value of bulk TiO2. Interestingly, photo-excitation in the UV gives rise to an emission band centered at 420 nm with a lifetime of about 6 ns. More experiments are being carried out to identify the nature of the emitting electronic transition.",
author = "Marco Cannas and Simonpietro Agnello and Gianpiero Buscarino and Fabrizio Messina and Antonino Alessi and Lavinia Vaccaro and Luisa Sciortino",
year = "2013",
language = "English",

}

TY - CONF

T1 - Emissive titanium dioxide nanoparticles synthesized py pulsed laser ablation in liquid phase

AU - Cannas, Marco

AU - Agnello, Simonpietro

AU - Buscarino, Gianpiero

AU - Messina, Fabrizio

AU - Alessi, Antonino

AU - Vaccaro, Lavinia

AU - Sciortino, Luisa

PY - 2013

Y1 - 2013

N2 - The remarkable applications of TiO2 nanomaterials, including, e.g. photocatalysis and dye-sensitized solar cells, have inspired in the last two decades an extensive amount of research aimed at understanding the properties of these materials. Photoluminescence is scarcely used to probe the electronic properties of TiO2, because neither bulk or nanosized TiO2 commonly display room-temperature emission. In particular, the fundamental luminescence due to the recombination of the self-trapped exciton in anatase TiO2 is typically observed only at low temperatures. We report the synthesis of luminescent titanium dioxide nanoparticles (NPs) by pulsed laser ablation of titanium in aqueous solution. The ablation procedure yields a colloidal solution of nano-sized TiO2 in a mixture of the anatase and rutile forms, as verified by Raman measurements. Atomic force microscopy shows that the average size of the primary NPs is about 4 nm. Their absorption spectrum in water features a fundamental threshold at about 3.5 eV, slightly blue-shifted with respect to the characteristic value of bulk TiO2. Interestingly, photo-excitation in the UV gives rise to an emission band centered at 420 nm with a lifetime of about 6 ns. More experiments are being carried out to identify the nature of the emitting electronic transition.

AB - The remarkable applications of TiO2 nanomaterials, including, e.g. photocatalysis and dye-sensitized solar cells, have inspired in the last two decades an extensive amount of research aimed at understanding the properties of these materials. Photoluminescence is scarcely used to probe the electronic properties of TiO2, because neither bulk or nanosized TiO2 commonly display room-temperature emission. In particular, the fundamental luminescence due to the recombination of the self-trapped exciton in anatase TiO2 is typically observed only at low temperatures. We report the synthesis of luminescent titanium dioxide nanoparticles (NPs) by pulsed laser ablation of titanium in aqueous solution. The ablation procedure yields a colloidal solution of nano-sized TiO2 in a mixture of the anatase and rutile forms, as verified by Raman measurements. Atomic force microscopy shows that the average size of the primary NPs is about 4 nm. Their absorption spectrum in water features a fundamental threshold at about 3.5 eV, slightly blue-shifted with respect to the characteristic value of bulk TiO2. Interestingly, photo-excitation in the UV gives rise to an emission band centered at 420 nm with a lifetime of about 6 ns. More experiments are being carried out to identify the nature of the emitting electronic transition.

UR - http://hdl.handle.net/10447/98103

M3 - Paper

ER -