Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat.

Risultato della ricerca: Articlepeer review

16 Citazioni (Scopus)

Abstract

The presence of nitric oxide (NO) synthase and of soluble guanylyl cyclase, the main NO-activated metabolic pathway, has been demonstrated in many cells of the subthalamic nucleus. In this study, the effects induced on the firing of 96 subthalamic neurons by microiontophoretically administering drugs modifying NO neurotransmission were explored in anaesthetized rats. Recorded neurons were classified into regularly and irregularly discharging on the basis of their firing pattern. Nω-nitro-l-arginine methyl ester (L-NAME; a NO synthase inhibitor), 3-morpholino-sydnonimin-hydrocloride (SIN-1; a NO donor), S-nitroso-glutathione (SNOG; another NO donor) and 8-Br-cGMP (a cell-permeable analogue of cGMP, the main second-messenger of NO neurotransmission) were iontophoretically applied while performing single-unit extracellular recordings. The activity of most neurons was influenced in a statistically significant way: in particular, both current-related inhibitory L-NAME-induced effects (20/39 tested cells) and excitatory effects of SIN-1 (25/41 tested neurons), SNOG (19/32 tested cells) and 8-Br-cGMP (13/19 tested neurons) were demonstrated. Neither statistically significant differences between the responses of regularly and irregularly discharging cells, nor specific topographical clustering of responding neurons, were demonstrated. Neurons administered drugs oppositely modulating the NO neurotransmission often displayed responses to only one treatment. We hypothesize that NO neurotransmission could exert a modulatory influence upon subthalamic neurons, with a prevalent excitatory effect. However, in the light of the presence of some responses of opposite sign to the same drug displayed by different subthalamic neurons, more complex effects of NO neurotransmission could be suggested, probably due to interactions with other classical neurotransmitter systems. © The Authors (2006).
Lingua originaleEnglish
pagine (da-a)1995-2002
Numero di pagine8
RivistaEuropean Journal of Neuroscience
Volume24(7)
Stato di pubblicazionePublished - 2006

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Fingerprint Entra nei temi di ricerca di 'Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat.'. Insieme formano una fingerprint unica.

Cita questo