Effects of Grazing on the Behaviour, Oxidative and Immune Status, and Production of Organic Dairy Cows

Marco Alabiso, Adriana Bonanno, Antonino Di Grigoli, Daniela Giorgio, Adriana Di Trana, Giuseppe Maniaci

Risultato della ricerca: Article

1 Citazione (Scopus)

Abstract

This study compared the effects of a short daily grazing time with those of permanent free-stall housing on the behaviour, oxidative status, immune response, and milk production of organically reared cows. During a 63-day period, two homogeneous groups of eight lactating Brown cows were allocated to either housing (H) in a free-stall building for 24 h/day. Feeding was based on a total mixed ration or grazing (G) on barley grass for 5 h/day, and housing in a free-stall structure with feeding was based on the same total mixed ration offered to the H group. With regard to behaviour, H cows spent more time idling, walking, drinking, and self-grooming, whereas G cows showed a greater intent to eat and interact socially. Moreover, G cows exhibited slightly higher reactive oxygen metabolites and similar biological antioxidant potential concentrations than the H group, which indicates that short grazing resulted in an almost negligible increase in oxidative stress and an unchanged antioxidant capacity. Skin tests, performed by injecting phytohemoagglutinin intradermally, indicated that G cows had thicker skin than H cows at the end of the trial, an index of a better cell-mediated immune response. Grazing did not affect milk yield but improved milk quality in terms of an increase in fat and a reduction in urea content, somatic cell count, and total microbial count. Milk from G cows was richer in saturated fatty acids, likely because of the contribution of palmitic acid present in the grazed barley grass, and also showed higher contents of some healthy fatty acids, such as rumenic acid and α-linolenic acid, and a lower omega-6/omega-3 ratio. These results show that including a short grazing time in the diets of organic dairy cows does not have negative consequences for milk production and contributes to improved milk quality as well as to a more efficient immune response in the cows.
Lingua originaleEnglish
Numero di pagine11
RivistaAnimals
Volume9
Stato di pubblicazionePublished - 2019

Fingerprint

organic production
Milk
dairy cows
grazing
cows
free stalls
Hordeum
Poaceae
Fatty Acids
Antioxidants
total mixed rations
milk quality
Grooming
alpha-Linolenic Acid
Palmitic Acid
milk production
Skin Tests
barley
immune response
Drinking

All Science Journal Classification (ASJC) codes

  • Animal Science and Zoology
  • veterinary(all)

Cita questo

Effects of Grazing on the Behaviour, Oxidative and Immune Status, and Production of Organic Dairy Cows. / Alabiso, Marco; Bonanno, Adriana; Di Grigoli, Antonino; Giorgio, Daniela; Di Trana, Adriana; Maniaci, Giuseppe.

In: Animals, Vol. 9, 2019.

Risultato della ricerca: Article

@article{258ce90ad7cf4d4c951a49866d42c73c,
title = "Effects of Grazing on the Behaviour, Oxidative and Immune Status, and Production of Organic Dairy Cows",
abstract = "This study compared the effects of a short daily grazing time with those of permanent free-stall housing on the behaviour, oxidative status, immune response, and milk production of organically reared cows. During a 63-day period, two homogeneous groups of eight lactating Brown cows were allocated to either housing (H) in a free-stall building for 24 h/day. Feeding was based on a total mixed ration or grazing (G) on barley grass for 5 h/day, and housing in a free-stall structure with feeding was based on the same total mixed ration offered to the H group. With regard to behaviour, H cows spent more time idling, walking, drinking, and self-grooming, whereas G cows showed a greater intent to eat and interact socially. Moreover, G cows exhibited slightly higher reactive oxygen metabolites and similar biological antioxidant potential concentrations than the H group, which indicates that short grazing resulted in an almost negligible increase in oxidative stress and an unchanged antioxidant capacity. Skin tests, performed by injecting phytohemoagglutinin intradermally, indicated that G cows had thicker skin than H cows at the end of the trial, an index of a better cell-mediated immune response. Grazing did not affect milk yield but improved milk quality in terms of an increase in fat and a reduction in urea content, somatic cell count, and total microbial count. Milk from G cows was richer in saturated fatty acids, likely because of the contribution of palmitic acid present in the grazed barley grass, and also showed higher contents of some healthy fatty acids, such as rumenic acid and α-linolenic acid, and a lower omega-6/omega-3 ratio. These results show that including a short grazing time in the diets of organic dairy cows does not have negative consequences for milk production and contributes to improved milk quality as well as to a more efficient immune response in the cows.",
author = "Marco Alabiso and Adriana Bonanno and {Di Grigoli}, Antonino and Daniela Giorgio and {Di Trana}, Adriana and Giuseppe Maniaci",
year = "2019",
language = "English",
volume = "9",
journal = "Animals",
issn = "2076-2615",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",

}

TY - JOUR

T1 - Effects of Grazing on the Behaviour, Oxidative and Immune Status, and Production of Organic Dairy Cows

AU - Alabiso, Marco

AU - Bonanno, Adriana

AU - Di Grigoli, Antonino

AU - Giorgio, Daniela

AU - Di Trana, Adriana

AU - Maniaci, Giuseppe

PY - 2019

Y1 - 2019

N2 - This study compared the effects of a short daily grazing time with those of permanent free-stall housing on the behaviour, oxidative status, immune response, and milk production of organically reared cows. During a 63-day period, two homogeneous groups of eight lactating Brown cows were allocated to either housing (H) in a free-stall building for 24 h/day. Feeding was based on a total mixed ration or grazing (G) on barley grass for 5 h/day, and housing in a free-stall structure with feeding was based on the same total mixed ration offered to the H group. With regard to behaviour, H cows spent more time idling, walking, drinking, and self-grooming, whereas G cows showed a greater intent to eat and interact socially. Moreover, G cows exhibited slightly higher reactive oxygen metabolites and similar biological antioxidant potential concentrations than the H group, which indicates that short grazing resulted in an almost negligible increase in oxidative stress and an unchanged antioxidant capacity. Skin tests, performed by injecting phytohemoagglutinin intradermally, indicated that G cows had thicker skin than H cows at the end of the trial, an index of a better cell-mediated immune response. Grazing did not affect milk yield but improved milk quality in terms of an increase in fat and a reduction in urea content, somatic cell count, and total microbial count. Milk from G cows was richer in saturated fatty acids, likely because of the contribution of palmitic acid present in the grazed barley grass, and also showed higher contents of some healthy fatty acids, such as rumenic acid and α-linolenic acid, and a lower omega-6/omega-3 ratio. These results show that including a short grazing time in the diets of organic dairy cows does not have negative consequences for milk production and contributes to improved milk quality as well as to a more efficient immune response in the cows.

AB - This study compared the effects of a short daily grazing time with those of permanent free-stall housing on the behaviour, oxidative status, immune response, and milk production of organically reared cows. During a 63-day period, two homogeneous groups of eight lactating Brown cows were allocated to either housing (H) in a free-stall building for 24 h/day. Feeding was based on a total mixed ration or grazing (G) on barley grass for 5 h/day, and housing in a free-stall structure with feeding was based on the same total mixed ration offered to the H group. With regard to behaviour, H cows spent more time idling, walking, drinking, and self-grooming, whereas G cows showed a greater intent to eat and interact socially. Moreover, G cows exhibited slightly higher reactive oxygen metabolites and similar biological antioxidant potential concentrations than the H group, which indicates that short grazing resulted in an almost negligible increase in oxidative stress and an unchanged antioxidant capacity. Skin tests, performed by injecting phytohemoagglutinin intradermally, indicated that G cows had thicker skin than H cows at the end of the trial, an index of a better cell-mediated immune response. Grazing did not affect milk yield but improved milk quality in terms of an increase in fat and a reduction in urea content, somatic cell count, and total microbial count. Milk from G cows was richer in saturated fatty acids, likely because of the contribution of palmitic acid present in the grazed barley grass, and also showed higher contents of some healthy fatty acids, such as rumenic acid and α-linolenic acid, and a lower omega-6/omega-3 ratio. These results show that including a short grazing time in the diets of organic dairy cows does not have negative consequences for milk production and contributes to improved milk quality as well as to a more efficient immune response in the cows.

UR - http://hdl.handle.net/10447/362231

M3 - Article

VL - 9

JO - Animals

JF - Animals

SN - 2076-2615

ER -