Dynamic Demand and Mean-Field Games

Dario Bauso, Dario Bauso

Risultato della ricerca: Article

3 Citazioni (Scopus)

Abstract

Within the realm of smart buildings and smart cities, dynamic response management is playing an ever-increasing role, thus attracting the attention of scientists from different disciplines. Dynamic demand response management involves a set of operations aiming at decentralizing the control of loads in large and complex power networks. Each single appliance is fully responsive and readjusts its energy demand to the overall network load. A main issue is related to mains frequency oscillations resulting from an unbalance between supply and demand. In a nutshell, this paper contributes to the topic by equipping each consumer with strategic insight. In particular, we highlight three main contributions and a few other minor contributions. First, we design a mean-field game for a population of thermostatically controlled loads, study the mean-field equilibrium for the deterministic mean-field game, and investigate on asymptotic stability for the microscopic dynamics. Second, we extend the analysis and design to uncertain models, which involve both stochastic or deterministic disturbances. This leads to robust mean-field equilibrium strategies guaranteeing stochastic and worst-case stability, respectively. Minor contributions involve the use of stochastic control strategies rather than deterministic and some numerical studies illustrating the efficacy of the proposed strategies.
Lingua originaleEnglish
Numero di pagine13
RivistaIEEE Transactions on Automatic Control
Stato di pubblicazionePublished - 2017

Fingerprint

Intelligent buildings
Asymptotic stability
Dynamic response
Smart city

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Cita questo

Dynamic Demand and Mean-Field Games. / Bauso, Dario; Bauso, Dario.

In: IEEE Transactions on Automatic Control, 2017.

Risultato della ricerca: Article

@article{933965801f004a4ca8719d681cb7e122,
title = "Dynamic Demand and Mean-Field Games",
abstract = "Within the realm of smart buildings and smart cities, dynamic response management is playing an ever-increasing role, thus attracting the attention of scientists from different disciplines. Dynamic demand response management involves a set of operations aiming at decentralizing the control of loads in large and complex power networks. Each single appliance is fully responsive and readjusts its energy demand to the overall network load. A main issue is related to mains frequency oscillations resulting from an unbalance between supply and demand. In a nutshell, this paper contributes to the topic by equipping each consumer with strategic insight. In particular, we highlight three main contributions and a few other minor contributions. First, we design a mean-field game for a population of thermostatically controlled loads, study the mean-field equilibrium for the deterministic mean-field game, and investigate on asymptotic stability for the microscopic dynamics. Second, we extend the analysis and design to uncertain models, which involve both stochastic or deterministic disturbances. This leads to robust mean-field equilibrium strategies guaranteeing stochastic and worst-case stability, respectively. Minor contributions involve the use of stochastic control strategies rather than deterministic and some numerical studies illustrating the efficacy of the proposed strategies.",
author = "Dario Bauso and Dario Bauso",
year = "2017",
language = "English",
journal = "IEEE Transactions on Automatic Control",
issn = "0018-9286",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Dynamic Demand and Mean-Field Games

AU - Bauso, Dario

AU - Bauso, Dario

PY - 2017

Y1 - 2017

N2 - Within the realm of smart buildings and smart cities, dynamic response management is playing an ever-increasing role, thus attracting the attention of scientists from different disciplines. Dynamic demand response management involves a set of operations aiming at decentralizing the control of loads in large and complex power networks. Each single appliance is fully responsive and readjusts its energy demand to the overall network load. A main issue is related to mains frequency oscillations resulting from an unbalance between supply and demand. In a nutshell, this paper contributes to the topic by equipping each consumer with strategic insight. In particular, we highlight three main contributions and a few other minor contributions. First, we design a mean-field game for a population of thermostatically controlled loads, study the mean-field equilibrium for the deterministic mean-field game, and investigate on asymptotic stability for the microscopic dynamics. Second, we extend the analysis and design to uncertain models, which involve both stochastic or deterministic disturbances. This leads to robust mean-field equilibrium strategies guaranteeing stochastic and worst-case stability, respectively. Minor contributions involve the use of stochastic control strategies rather than deterministic and some numerical studies illustrating the efficacy of the proposed strategies.

AB - Within the realm of smart buildings and smart cities, dynamic response management is playing an ever-increasing role, thus attracting the attention of scientists from different disciplines. Dynamic demand response management involves a set of operations aiming at decentralizing the control of loads in large and complex power networks. Each single appliance is fully responsive and readjusts its energy demand to the overall network load. A main issue is related to mains frequency oscillations resulting from an unbalance between supply and demand. In a nutshell, this paper contributes to the topic by equipping each consumer with strategic insight. In particular, we highlight three main contributions and a few other minor contributions. First, we design a mean-field game for a population of thermostatically controlled loads, study the mean-field equilibrium for the deterministic mean-field game, and investigate on asymptotic stability for the microscopic dynamics. Second, we extend the analysis and design to uncertain models, which involve both stochastic or deterministic disturbances. This leads to robust mean-field equilibrium strategies guaranteeing stochastic and worst-case stability, respectively. Minor contributions involve the use of stochastic control strategies rather than deterministic and some numerical studies illustrating the efficacy of the proposed strategies.

UR - http://hdl.handle.net/10447/253225

M3 - Article

JO - IEEE Transactions on Automatic Control

JF - IEEE Transactions on Automatic Control

SN - 0018-9286

ER -