Abstract
We define for 1 <= r < infinity a norm for the class of functions which are Henstock-Kurzweil integrable in the L-r sense. We then establish that the dual in this norm is isometrically isomorphic to L-r' and is therefore a Banach space, and in the case r = 2, a Hilbert space. Finally, we give results pertaining to convergence and weak convergence in this space.
Lingua originale | English |
---|---|
pagine (da-a) | 151-160 |
Numero di pagine | 10 |
Rivista | Minimax Theory and its Applications |
Volume | 4 |
Stato di pubblicazione | Published - 2019 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2603???
- ???subjectarea.asjc.2600.2606???
- ???subjectarea.asjc.2600.2605???