Abstract
We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodym property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals.
Lingua originale | English |
---|---|
pagine (da-a) | 169-180 |
Numero di pagine | 12 |
Rivista | FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI |
Volume | 50 |
Stato di pubblicazione | Published - 2014 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2600???