Abstract
This work studies the heat equation in a two-phase material withspherical inclusions. Under some appropriate scaling on the size, volume frac-tion and heat capacity of the inclusions, we derive a coupled system of partialdifferential equations governing the evolution of the temperature of each phaseat a macroscopic level of description. The coupling terms describing the ex-change of heat between the phases are obtained by using homogenization tech-niques originating from [D. Cioranescu, F. Murat: Coll`ege de France Seminarvol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98–138. Pitman,Boston, London, 1982.]
Lingua originale | English |
---|---|
pagine (da-a) | 1583-1613 |
Numero di pagine | 31 |
Rivista | MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE |
Volume | 48 |
Stato di pubblicazione | Published - 2014 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2603???
- ???subjectarea.asjc.2600.2612???
- ???subjectarea.asjc.2600.2611???
- ???subjectarea.asjc.2600.2605???
- ???subjectarea.asjc.2600.2604???