Abstract
We characterize when the countable power of a Corson compactum has a dense metrizable subspace and construct consistent examples of Corson compacta whose countable power does not have a dense metrizable subspace. We also give several remarks about ccc Corson compacta and, as a byproduct, we obtain a new proof of Kunen and van Mill's characterization of when a Corson compactum supporting a strictly positive measure is metrizable.
Lingua originale | English |
---|---|
pagine (da-a) | 3177-3187 |
Numero di pagine | 11 |
Rivista | Proceedings of the American Mathematical Society |
Volume | 150 |
Stato di pubblicazione | Published - 2022 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2600???
- ???subjectarea.asjc.2600.2604???