TY - JOUR
T1 - Deep learning approach for the segmentation of aneurysmal ascending aorta
AU - Petrucci, Giovanni
AU - Comelli, Albert
AU - Pasta, Salvatore
AU - Benfante, Viviana
AU - Pilato, Michele
AU - Raffa, Giuseppe M.
AU - Stefano, Alessandro
AU - Gentile, Giovanni
AU - Comelli, Albert
AU - Agnese, Valentina
AU - Dahiya, Navdeep
AU - Benfante, Viviana
AU - Raffa, Giuseppe M.
AU - Gentile, Giovanni
AU - Yezzi, Anthony
PY - 2020
Y1 - 2020
N2 - Diagnosis of ascending thoracic aortic aneurysm (ATAA) is based on the measurement of the maximum aortic diameter, but size is not a good predictor of the risk of adverse events. There is growing interest in the development of novel image-derived risk strategies to improve patient risk management towards a highly individualized level. In this study, the feasibility and efficacy of deep learning for the automatic segmentation of ATAAs was investigated using UNet, ENet, and ERFNet techniques. Specifically, CT angiography done on 72 patients with ATAAs and different valve morphology (i.e., tricuspid aortic valve, TAV, and bicuspid aortic valve, BAV) were semi-automatically segmented with Mimics software (Materialize NV, Leuven, Belgium), and then used for training of the tested deep learning models. The segmentation performance in terms of accuracy and time inference were compared using several parameters. All deep learning models reported a dice score higher than 88%, suggesting a good agreement between predicted and manual ATAA segmentation. We found that the ENet and UNet are more accurate than ERFNet, with the ENet much faster than UNet. This study demonstrated that deep learning models can rapidly segment and quantify the 3D geometry of ATAAs with high accuracy, thereby facilitating the expansion into clinical workflow of personalized approach to the management of patients with ATAAs.
AB - Diagnosis of ascending thoracic aortic aneurysm (ATAA) is based on the measurement of the maximum aortic diameter, but size is not a good predictor of the risk of adverse events. There is growing interest in the development of novel image-derived risk strategies to improve patient risk management towards a highly individualized level. In this study, the feasibility and efficacy of deep learning for the automatic segmentation of ATAAs was investigated using UNet, ENet, and ERFNet techniques. Specifically, CT angiography done on 72 patients with ATAAs and different valve morphology (i.e., tricuspid aortic valve, TAV, and bicuspid aortic valve, BAV) were semi-automatically segmented with Mimics software (Materialize NV, Leuven, Belgium), and then used for training of the tested deep learning models. The segmentation performance in terms of accuracy and time inference were compared using several parameters. All deep learning models reported a dice score higher than 88%, suggesting a good agreement between predicted and manual ATAA segmentation. We found that the ENet and UNet are more accurate than ERFNet, with the ENet much faster than UNet. This study demonstrated that deep learning models can rapidly segment and quantify the 3D geometry of ATAAs with high accuracy, thereby facilitating the expansion into clinical workflow of personalized approach to the management of patients with ATAAs.
UR - http://hdl.handle.net/10447/453694
M3 - Article
JO - Biomedical Engineering Letters
JF - Biomedical Engineering Letters
SN - 2093-9868
ER -