Deep Convolutional Neural Network for HEp-2 fluorescence intensity classification

Risultato della ricerca: Articlepeer review

11 Citazioni (Scopus)

Abstract

Indirect ImmunoFluorescence (IIF) assays are recommended as the gold standard method for detection of antinuclear antibodies (ANAs), which are of considerable importance in the diagnosis of autoimmune diseases. Fluorescence intensity analysis is very often complex, and depending on the capabilities of the operator, the association with incorrect classes is statistically easy. In this paper, we present a Convolutional Neural Network (CNN) system to classify positive/negative fluorescence intensity of HEp-2 IIF images, which is important for autoimmune diseases diagnosis. The method uses the best known pre-trained CNNs to extract features and a support vector machine (SVM) classifier for the final association to the positive or negative classes. This system has been developed and the classifier was trained on a database implemented by the AIDA (AutoImmunité, Diagnostic Assisté par ordinateur) project. The method proposed here has been tested on a public part of the same database, consisting of 2080 IIF images. The performance analysis showed an accuracy of fluorescent intensity around 93%. The results have been evaluated by comparing them with some of the most representative state-of-the-art works, demonstrating the quality of the system in the intensity classification of HEp-2 images.
Lingua originaleEnglish
pagine (da-a)408-1-408-9
Numero di pagine9
RivistaAPPLIED SCIENCES
Volume9
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint Entra nei temi di ricerca di 'Deep Convolutional Neural Network for HEp-2 fluorescence intensity classification'. Insieme formano una fingerprint unica.

Cita questo