Convergence Analysis of Extended Kalman Filter for Sensorless Control of Induction Motor

    Risultato della ricerca: Article

    79 Citazioni (Scopus)

    Abstract

    This paper deals with convergence analysis of the Extended Kalman Filters (EKF) for sensorless motion control systems with induction motor. An EKF is tuned according to a six–order discrete–time model of the induction motor, affected by system and measurement noises, obtained by applying a first–order Euler discretization to a six–order continuous–time model. Some properties of the discrete–time model have been explored. Among these properties it is relevant the observability property, which leads to conditions that can be directly linked with the working conditions of the machine. Starting from these properties, the convergence of the stochastic state estimation process, in mean square sense, has been shown. The convergence is also explored with reference to the difference between the samples of the state of the continuous–time model and that estimated by the EKF. The results achieved theoretically have been also validated by means of experimental tests carried out on an IM prototype.
    Lingua originaleEnglish
    pagine (da-a)2341-2352
    Numero di pagine12
    RivistaIEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
    Volume62
    Stato di pubblicazionePublished - 2015

      Fingerprint

    All Science Journal Classification (ASJC) codes

    • Control and Systems Engineering
    • Electrical and Electronic Engineering
    • Computer Science Applications

    Cita questo