Computational modeling of bicuspid aortopathy: Towards personalized risk strategies

Valentina Agnese, Federica Cosentino, Francesco Scardulla, Leonardo D'Acquisto, Salvatore Pasta, Michele Pilato, Diego Bellavia, Giuseppe Raffa, Giovanni Gentile, Salvatore Pasta, Valentina Agnese, Federica Cosentino, Giovanni Domenico Gentile

Risultato della ricerca: Article

1 Citazioni (Scopus)

Abstract

This paper describes current advances on the application of in-silico for the understanding of bicuspid aortopathy and future perspectives of this technology on routine clinical care. This includes the impact that artificial intelligence can provide to develop computer-based clinical decision support system and that wearable sensors can offer to remotely monitor high-risk bicuspid aortic valve (BAV) patients. First, we discussed the benefit of computational modeling by providing tangible examples of in-silico software products based on computational fluid-dynamic (CFD) and finite-element method (FEM) that are currently transforming the way we diagnose and treat cardiovascular diseases. Then, we presented recent findings on computational hemodynamic and structural mechanics of BAV to highlight the potentiality of patient-specific metrics (not-based on aortic size) to support the clinical-decision making process of BAV-associated aneurysms. Examples of BAV-related personalized healthcare solutions are illustrated.
Lingua originaleEnglish
pagine (da-a)122-131
Numero di pagine10
RivistaJournal of Molecular and Cellular Cardiology
Volume131
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cardiology and Cardiovascular Medicine

Fingerprint Entra nei temi di ricerca di 'Computational modeling of bicuspid aortopathy: Towards personalized risk strategies'. Insieme formano una fingerprint unica.

  • Cita questo

    Agnese, V., Cosentino, F., Scardulla, F., D'Acquisto, L., Pasta, S., Pilato, M., Bellavia, D., Raffa, G., Gentile, G., Pasta, S., Agnese, V., Cosentino, F., & Gentile, G. D. (2019). Computational modeling of bicuspid aortopathy: Towards personalized risk strategies. Journal of Molecular and Cellular Cardiology, 131, 122-131.