Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring

Luca Faes, Alessandro Busacca, Riccardo Pernice, Zuzana Turianikova, Barbora Czippelova, Jana Krohova, Michal Javorka

Risultato della ricerca: Article

6 Citazioni (Scopus)

Abstract

Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV time series obtained from continuous blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-based recordings in place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, postural stress during 45° head-up tilt, and mental stress during computation of arithmetic test. Nine different indexes have been taken into account, computed in the time domain (mean, variance, root mean square of the successive differences), frequency domain (low-to-high frequency power ratio LF/HF, HF spectral power, and central frequency), and information domain (entropy, conditional entropy, self entropy). Thorough validation has been performed using comparison of the HRV and PRV distributions, robust linear regression, and Bland-Altman plots. Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV during stress conditions.
Lingua originaleEnglish
pagine (da-a)1247-1263
Numero di pagine17
RivistaMEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
Volume57
Stato di pubblicazionePublished - 2019

Fingerprint

Blood pressure
Monitoring
Entropy
Time series
Photoplethysmography
Linear regression

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Computer Science Applications

Cita questo

@article{df29fc6865494585bad96c190e4b3b74,
title = "Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring",
abstract = "Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV time series obtained from continuous blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-based recordings in place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, postural stress during 45° head-up tilt, and mental stress during computation of arithmetic test. Nine different indexes have been taken into account, computed in the time domain (mean, variance, root mean square of the successive differences), frequency domain (low-to-high frequency power ratio LF/HF, HF spectral power, and central frequency), and information domain (entropy, conditional entropy, self entropy). Thorough validation has been performed using comparison of the HRV and PRV distributions, robust linear regression, and Bland-Altman plots. Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV during stress conditions.",
author = "Luca Faes and Alessandro Busacca and Riccardo Pernice and Zuzana Turianikova and Barbora Czippelova and Jana Krohova and Michal Javorka",
year = "2019",
language = "English",
volume = "57",
pages = "1247--1263",
journal = "MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING",
issn = "0140-0118",

}

TY - JOUR

T1 - Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring

AU - Faes, Luca

AU - Busacca, Alessandro

AU - Pernice, Riccardo

AU - Turianikova, Zuzana

AU - Czippelova, Barbora

AU - Krohova, Jana

AU - Javorka, Michal

PY - 2019

Y1 - 2019

N2 - Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV time series obtained from continuous blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-based recordings in place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, postural stress during 45° head-up tilt, and mental stress during computation of arithmetic test. Nine different indexes have been taken into account, computed in the time domain (mean, variance, root mean square of the successive differences), frequency domain (low-to-high frequency power ratio LF/HF, HF spectral power, and central frequency), and information domain (entropy, conditional entropy, self entropy). Thorough validation has been performed using comparison of the HRV and PRV distributions, robust linear regression, and Bland-Altman plots. Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV during stress conditions.

AB - Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV time series obtained from continuous blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-based recordings in place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, postural stress during 45° head-up tilt, and mental stress during computation of arithmetic test. Nine different indexes have been taken into account, computed in the time domain (mean, variance, root mean square of the successive differences), frequency domain (low-to-high frequency power ratio LF/HF, HF spectral power, and central frequency), and information domain (entropy, conditional entropy, self entropy). Thorough validation has been performed using comparison of the HRV and PRV distributions, robust linear regression, and Bland-Altman plots. Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV during stress conditions.

UR - http://hdl.handle.net/10447/349859

M3 - Article

VL - 57

SP - 1247

EP - 1263

JO - MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING

JF - MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING

SN - 0140-0118

ER -