TY - JOUR
T1 - Comparative Experimental and Theoretical Study of the C and O K-Edge X-ray Absorption Spectroscopy in Three Highly Popular, Low Spin Organoiron Complexes: [Fe(CO)5], [(η5-C5H5)Fe(CO)(μ-CO)]2, and [(η5-C5H5)2Fe]
AU - Casella, Girolamo
AU - Carlotto, Silvia
AU - Coreno, Marcello
AU - De Simone, Monica
AU - Sambi, Mauro
AU - Casarin, Maurizio
AU - Finetti, Paola
AU - De Simone, Monica
PY - 2019
Y1 - 2019
N2 - The unoccupied electronic structures of three closed-shell, highly popular organoiron complexes ([Fe(CO)5], [(η5-C5H5)Fe(CO)(μ-CO)]2, and [(η5-C5H5)2Fe]; 0, I, and II, respectively) have been investigated both experimentally and theoretically by combining original gas-phase X-ray absorption spectroscopy (XAS) outcomes recorded at the C and O K-edge with results of scalar relativistic time-dependent density functional calculations carried out within the zeroth order regular approximation. Experimental evidence herein discussed complement the Fe L2,3-edges XAS ones we recently recorded, modeled, and assigned for the same complexes (Carlotto et al. Inorg. Chem. 2019, 58, 5844). The first-principle simulation of the C and O K-edge features allowed us to univocally identify the electronic states associated to the ligand-to-metal charge transfer (LMCT) transitions both in I and in II. At variance to that, LMCT transitions with sizable oscillator strengths do not play any role in determining neither the C nor the O K-edge spectral pattern of 0. The higher IC-acceptor capability of the CO ligand, regardless of its terminal or bridging coordination, with respect to [(η5-C5H5)]- is herein ultimately confirmed.
AB - The unoccupied electronic structures of three closed-shell, highly popular organoiron complexes ([Fe(CO)5], [(η5-C5H5)Fe(CO)(μ-CO)]2, and [(η5-C5H5)2Fe]; 0, I, and II, respectively) have been investigated both experimentally and theoretically by combining original gas-phase X-ray absorption spectroscopy (XAS) outcomes recorded at the C and O K-edge with results of scalar relativistic time-dependent density functional calculations carried out within the zeroth order regular approximation. Experimental evidence herein discussed complement the Fe L2,3-edges XAS ones we recently recorded, modeled, and assigned for the same complexes (Carlotto et al. Inorg. Chem. 2019, 58, 5844). The first-principle simulation of the C and O K-edge features allowed us to univocally identify the electronic states associated to the ligand-to-metal charge transfer (LMCT) transitions both in I and in II. At variance to that, LMCT transitions with sizable oscillator strengths do not play any role in determining neither the C nor the O K-edge spectral pattern of 0. The higher IC-acceptor capability of the CO ligand, regardless of its terminal or bridging coordination, with respect to [(η5-C5H5)]- is herein ultimately confirmed.
UR - http://hdl.handle.net/10447/399422
UR - http://pubs.acs.org/journal/inocaj
M3 - Article
SN - 0020-1669
VL - 58
SP - 16411
EP - 16423
JO - Inorganic Chemistry
JF - Inorganic Chemistry
ER -