Common best proximity points and global optimal approximate solutions for new types of proximal contractions

Calogero Vetro, Hemant Kumar Nashine

Risultato della ricerca: Articlepeer review

Abstract

Let $(\mathcal{X},d)$ be a metric space, $\mathcal{A}$ and $\mathcal{B}$ be two non-empty subsets of $\mathcal{X}$ and $\mathcal{S},\mathcal{T}: \mathcal{A} \to \mathcal{B}$ be two non-self mappings. In view of the fact that, given any point $x \in \mathcal{A}$, the distances between $x$ and $\mathcal{S}x$ and between $x$ and $\mathcal{T}x$ are at least $d(\mathcal{A}, \mathcal{B}),$ which is the absolute infimum of $d(x, \mathcal{S} x)$ and $d(x, \mathcal{T} x)$, a common best proximity point theorem affirms the global minimum of both the functions $x \to d(x, \mathcal{S}x)$ and $x \to d(x, \mathcal{T}x)$ by imposing the common approximate solution of the equations $\mathcal{S}x = x$ and $\mathcal{T} x = x$ to satisfy the condition $d(x, \mathcal{S}x) = d(x, \mathcal{T} x) = d(\mathcal{A, B}).$ In this paper, we present two new types of proximal contractions and develop a common best proximity point theorem for proximally commuting non-self mappings, thereby yielding the common optimal approximate solution of some fixed point equations when there is no common solution.
Lingua originaleEnglish
pagine (da-a)919-930
Numero di pagine12
RivistaJournal of Nonlinear and Convex Analysis
Volume16
Stato di pubblicazionePublished - 2015

All Science Journal Classification (ASJC) codes

  • Analysis
  • Geometry and Topology
  • Control and Optimization
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Common best proximity points and global optimal approximate solutions for new types of proximal contractions'. Insieme formano una fingerprint unica.

Cita questo