Codimension growth of two-dimensional algebras

Antonino Giambruno, Mikhail Zaicev, Giambruno, Sergey Mishchenko

Risultato della ricerca: Articlepeer review

5 Citazioni (Scopus)


Let F be a field of characteristic zero and let A be a two-dimensional non-associative algebra over F. We prove that the sequence c_n(A), n=1, 2, . . . , of codimensions of A is either bounded by n + 1 or grows exponentially as 2^n. We also construct a family of two-dimensional algebras indexed by rational numbers with distinct T-ideals of polynomial identities and whose codimension sequence is n + 1, n ≥ 2.
Lingua originaleEnglish
pagine (da-a)3405-3415
Numero di pagine11
RivistaProceedings of the American Mathematical Society
Stato di pubblicazionePublished - 2007

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2600???
  • ???subjectarea.asjc.2600.2604???


Entra nei temi di ricerca di 'Codimension growth of two-dimensional algebras'. Insieme formano una fingerprint unica.

Cita questo