Central polynomials of graded algebras: Capturing their exponential growth

Risultato della ricerca: Articlepeer review


Let G be a finite abelian group and let A be an associative G-graded algebra over a field of characteristic zero. A central G-polynomial is a polynomial of the free associative G-graded algebra that takes central values for all graded substitutions of homogeneous elements of A. We prove the existence and the integrability of two limits called the central G-exponent and the proper central G-exponent that give a quantitative measure of the growth of the central G-polynomials and the proper central G-polynomials, respectively. Moreover, we compare them with the G-exponent of the algebra.
Lingua originaleEnglish
pagine (da-a)45-70
Numero di pagine26
RivistaJournal of Algebra
Stato di pubblicazionePublished - 2022

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2600.2602???


Entra nei temi di ricerca di 'Central polynomials of graded algebras: Capturing their exponential growth'. Insieme formano una fingerprint unica.

Cita questo