TY - JOUR
T1 - Broadband photocurrent enhancement in a-Si:H solar cells with Plasmonic back reflectors
AU - Crupi, Isodiana
AU - Mateus, Tiago
AU - Mendes, Manuel J.
AU - Fortunato, Elvira
AU - Morawiec, Seweryn
AU - Priolo, Francesco
AU - Ferreira, Isabel
AU - Filonovich, Sergej A.
AU - Crupi, Isodiana
AU - Simone, Francesca
AU - Águas, Hugo
AU - Martins, Rodrigo
AU - Mirabella, Salvatore
PY - 2014
Y1 - 2014
N2 - Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells' rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600-800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmonassisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices. © 2014 Optical Society of America.
AB - Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells' rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600-800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmonassisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices. © 2014 Optical Society of America.
UR - http://hdl.handle.net/10447/154919
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84903708033&partnerID=40&md5=ca25378da9af95a4513321c9db93d579
M3 - Article
SN - 1094-4087
VL - 22
SP - A1059-A1070
JO - Optics Express
JF - Optics Express
ER -