Brain protein expression changes in WAG/Rij rats, a genetic rat model of absence epilepsy after peripheral lipopolysaccharide treatment

Gergely Orban, Péter Baracskay, Attila Simor, Péter Gulyássy, Gábor Juhász, Balázs Györffy, Gergely Orbán, Katalin Völgyi, Zoltán Szabó, Zoltán Szabó, Zoltán Szabó, Árpád Dobolyi, Katalin A. Kékesi, András Czurkó, Tamás Janáky, Zsolt Kovács

    Risultato della ricerca: Articlepeer review

    17 Citazioni (Scopus)

    Abstract

    Peripheral injection of bacterial lipopolysaccharide (LPS) facilitates 8–10 Hz spike-wave discharges (SWD) characterizing absence epilepsy in WAG/Rij rats. It is unknown however, whether peripherally administered LPS is able to alter the generator areas of epileptic activity at the molecular level. We injected 1 mg/kg dose of LPS intraperitoneally into WAG/Rij rats, recorded the body temperature and EEG, and examined the protein expression changes of the proteome 12 h after injection in the fronto-parietal cortex and thalamus. We used fluorescent two-dimensional differential gel electrophoresis to investigate the expression profile. We found 16 differentially expressed proteins in the fronto-parietal cortex and 35 proteins in the thalamus. It is known that SWD genesis correlates with the transitional state of sleep–wake cycle thus we performed meta-analysis of the altered proteins in relation to inflammation, epilepsy as well as sleep. The analysis revealed that all categories are highly represented by the altered proteins and these protein-sets have considerable overlap. Protein network modeling suggested that the alterations in the proteome were largely induced by the immune response, which invokes the NFkB signaling pathway. The proteomics and computational analysis verified the known functional interplay between inflammation, epilepsy and sleep and highlighted proteins that are involved in their common synaptic mechanisms. Our physiological findings support the phenomenon that high dose of peripheral LPS injection increases SWD-number, modifies its duration as well as the sleep–wake stages and decreases body temperature.
    Lingua originaleEnglish
    pagine (da-a)86-95
    Numero di pagine10
    RivistaBRAIN BEHAVIOR AND IMMUNITY
    Volume35
    Stato di pubblicazionePublished - 2014

    All Science Journal Classification (ASJC) codes

    • ???subjectarea.asjc.2400.2403???
    • ???subjectarea.asjc.2800.2807???
    • ???subjectarea.asjc.2800.2802???

    Fingerprint

    Entra nei temi di ricerca di 'Brain protein expression changes in WAG/Rij rats, a genetic rat model of absence epilepsy after peripheral lipopolysaccharide treatment'. Insieme formano una fingerprint unica.

    Cita questo