BEAM ELEMENT UNDER FINITE ROTATIONS

Emma La Malfa Ribolla, Martin Horák, Emma La Malfa Ribolla, Milan Jirásek

Risultato della ricerca: Conference contribution

Abstract

The present work focuses on the 2-D formulation of a nonlinear beam model for slender structures that can exhibit large rotations of the cross sections while remaining in the small-strain regime. Bernoulli-Euler hypothesis that plane sections remain plane and perpendicular to the deformed beam centerline is combined with a linear elastic stress-strain law.The formulation is based on the integrated form of equilibrium equations and leads to a set of three first-order differential equations for the displacements and rotation, which are numerically integrated using a special version of the shooting method. The element has been implemented into an open-source finite element code to ease computations involving more complex structures. Numerical examples show a favorable comparison with standard beam elements formulated in the finite-strain framework and with analytical solutions.
Lingua originaleEnglish
Titolo della pubblicazione ospiteActa Polytechnica CTU Proceedings
Pagine87-92
Numero di pagine6
Stato di pubblicazionePublished - 2021

Serie di pubblicazioni

NomeACTA POLYTECHNICA CTU PROCEEDINGS

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.2200.2200???
  • ???subjectarea.asjc.3100.3100???
  • ???subjectarea.asjc.2600.2604???

Fingerprint

Entra nei temi di ricerca di 'BEAM ELEMENT UNDER FINITE ROTATIONS'. Insieme formano una fingerprint unica.

Cita questo