Assessment of the integrated urban water quality model complexity through identifiability analysis

Risultato della ricerca: Article

37 Citazioni (Scopus)

Abstract

Urban sources of water pollution have often been cited as the primary cause of poor water quality in receiving water bodies (RWB), and recently many studies have been conducted to investigate both continuous sources, such as wastewater-treatment plant (WWTP) effluents, and intermittent sources, such as combined sewer overflows (CSOs). An urban drainage system must be considered jointly, i.e., by means of an integrated approach. However, although the benefits of an integrated approach have been widely demonstrated, several aspects have prevented its wide application, such as the scarcity of field data for not only the input and output variables but also parameters that govern intermediate stages of the system, which are useful for robust calibration. These factors, along with the high complexity level of the currently adopted approaches, introduce uncertainties in the modelling process that are not always identifiable. In this study, the identifiability analysis was applied to a complex integrated catchment: the Nocella basin (Italy). This system is characterised by two main urban areas served by two WWTPs and has a small river as the RWB. The system was simulated by employing an integrated model developed in previous studies. The main goal of the study was to assess the right number of parameters that can be estimated on the basis of data-source availability. A preliminary sensitivity analysis was undertaken to reduce the model parameters to the most sensitive ones. Subsequently, the identifiability analysis was carried out by progressively considering new data sources and assessing the added value provided by each of them. In the process, several identifiability methods were compared and some new techniques were proposed for reducing subjectivity of the analysis. The study showed the potential of the identifiability analysis for selecting the most relevant parameters in the model, thus allowing for model simplification, and in assessing the impact of data sources for model reliability, thus guiding the analyst in the design of future monitoring campaigns. Further, the analysis showed some critical points in integrated urban drainage modelling, such as the interaction between water quality processes on the catchment and in the sewer, that can prevent the identifiability of some of the related parameters.
Lingua originaleEnglish
pagine (da-a)37-50
Numero di pagine14
RivistaWater Research
Volume45
Stato di pubblicazionePublished - 2011

Fingerprint

Water quality
water quality
Catchments
urban drainage
integrated approach
Drainage
catchment
Combined sewers
Water pollution
Sewers
water pollution
Wastewater treatment
Sensitivity analysis
modeling
sensitivity analysis
Water
Effluents
urban area
Rivers
analysis

All Science Journal Classification (ASJC) codes

  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Cita questo

@article{5a59d2d83f7a4af0a26afa08af33731f,
title = "Assessment of the integrated urban water quality model complexity through identifiability analysis",
abstract = "Urban sources of water pollution have often been cited as the primary cause of poor water quality in receiving water bodies (RWB), and recently many studies have been conducted to investigate both continuous sources, such as wastewater-treatment plant (WWTP) effluents, and intermittent sources, such as combined sewer overflows (CSOs). An urban drainage system must be considered jointly, i.e., by means of an integrated approach. However, although the benefits of an integrated approach have been widely demonstrated, several aspects have prevented its wide application, such as the scarcity of field data for not only the input and output variables but also parameters that govern intermediate stages of the system, which are useful for robust calibration. These factors, along with the high complexity level of the currently adopted approaches, introduce uncertainties in the modelling process that are not always identifiable. In this study, the identifiability analysis was applied to a complex integrated catchment: the Nocella basin (Italy). This system is characterised by two main urban areas served by two WWTPs and has a small river as the RWB. The system was simulated by employing an integrated model developed in previous studies. The main goal of the study was to assess the right number of parameters that can be estimated on the basis of data-source availability. A preliminary sensitivity analysis was undertaken to reduce the model parameters to the most sensitive ones. Subsequently, the identifiability analysis was carried out by progressively considering new data sources and assessing the added value provided by each of them. In the process, several identifiability methods were compared and some new techniques were proposed for reducing subjectivity of the analysis. The study showed the potential of the identifiability analysis for selecting the most relevant parameters in the model, thus allowing for model simplification, and in assessing the impact of data sources for model reliability, thus guiding the analyst in the design of future monitoring campaigns. Further, the analysis showed some critical points in integrated urban drainage modelling, such as the interaction between water quality processes on the catchment and in the sewer, that can prevent the identifiability of some of the related parameters.",
keywords = "Identifiability analysis, Integrated urban drainage modelling, River water-quality modelling, Uncertainty assessment",
author = "Gaspare Viviani and Giorgio Mannina and Gabriele Freni",
year = "2011",
language = "English",
volume = "45",
pages = "37--50",
journal = "Water Research",
issn = "0043-1354",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Assessment of the integrated urban water quality model complexity through identifiability analysis

AU - Viviani, Gaspare

AU - Mannina, Giorgio

AU - Freni, Gabriele

PY - 2011

Y1 - 2011

N2 - Urban sources of water pollution have often been cited as the primary cause of poor water quality in receiving water bodies (RWB), and recently many studies have been conducted to investigate both continuous sources, such as wastewater-treatment plant (WWTP) effluents, and intermittent sources, such as combined sewer overflows (CSOs). An urban drainage system must be considered jointly, i.e., by means of an integrated approach. However, although the benefits of an integrated approach have been widely demonstrated, several aspects have prevented its wide application, such as the scarcity of field data for not only the input and output variables but also parameters that govern intermediate stages of the system, which are useful for robust calibration. These factors, along with the high complexity level of the currently adopted approaches, introduce uncertainties in the modelling process that are not always identifiable. In this study, the identifiability analysis was applied to a complex integrated catchment: the Nocella basin (Italy). This system is characterised by two main urban areas served by two WWTPs and has a small river as the RWB. The system was simulated by employing an integrated model developed in previous studies. The main goal of the study was to assess the right number of parameters that can be estimated on the basis of data-source availability. A preliminary sensitivity analysis was undertaken to reduce the model parameters to the most sensitive ones. Subsequently, the identifiability analysis was carried out by progressively considering new data sources and assessing the added value provided by each of them. In the process, several identifiability methods were compared and some new techniques were proposed for reducing subjectivity of the analysis. The study showed the potential of the identifiability analysis for selecting the most relevant parameters in the model, thus allowing for model simplification, and in assessing the impact of data sources for model reliability, thus guiding the analyst in the design of future monitoring campaigns. Further, the analysis showed some critical points in integrated urban drainage modelling, such as the interaction between water quality processes on the catchment and in the sewer, that can prevent the identifiability of some of the related parameters.

AB - Urban sources of water pollution have often been cited as the primary cause of poor water quality in receiving water bodies (RWB), and recently many studies have been conducted to investigate both continuous sources, such as wastewater-treatment plant (WWTP) effluents, and intermittent sources, such as combined sewer overflows (CSOs). An urban drainage system must be considered jointly, i.e., by means of an integrated approach. However, although the benefits of an integrated approach have been widely demonstrated, several aspects have prevented its wide application, such as the scarcity of field data for not only the input and output variables but also parameters that govern intermediate stages of the system, which are useful for robust calibration. These factors, along with the high complexity level of the currently adopted approaches, introduce uncertainties in the modelling process that are not always identifiable. In this study, the identifiability analysis was applied to a complex integrated catchment: the Nocella basin (Italy). This system is characterised by two main urban areas served by two WWTPs and has a small river as the RWB. The system was simulated by employing an integrated model developed in previous studies. The main goal of the study was to assess the right number of parameters that can be estimated on the basis of data-source availability. A preliminary sensitivity analysis was undertaken to reduce the model parameters to the most sensitive ones. Subsequently, the identifiability analysis was carried out by progressively considering new data sources and assessing the added value provided by each of them. In the process, several identifiability methods were compared and some new techniques were proposed for reducing subjectivity of the analysis. The study showed the potential of the identifiability analysis for selecting the most relevant parameters in the model, thus allowing for model simplification, and in assessing the impact of data sources for model reliability, thus guiding the analyst in the design of future monitoring campaigns. Further, the analysis showed some critical points in integrated urban drainage modelling, such as the interaction between water quality processes on the catchment and in the sewer, that can prevent the identifiability of some of the related parameters.

KW - Identifiability analysis

KW - Integrated urban drainage modelling

KW - River water-quality modelling

KW - Uncertainty assessment

UR - http://hdl.handle.net/10447/52622

M3 - Article

VL - 45

SP - 37

EP - 50

JO - Water Research

JF - Water Research

SN - 0043-1354

ER -