Application of a Genetic Algorithm in Calibration of Traffic Microsimulation Models

Risultato della ricerca: Chapter

Abstract

This chapter describes the genetic algorithm-based calibration procedure for a microscopic traffic simulation model focusing on freeways and modern roundabouts. For both case studies, the genetic algorithm tool in MATLAB® was applied in order to reach the convergence between the outputs from Aimsun microscopic simulator and the observed data. The automatic interaction with Aimsun software was implemented through an original external Python script. Results showed that the genetic algorithm-based calibration procedure gave a better match to the observed data than simple manual calibration and the efficiency of the calibration efforts resulted significantly improved. At last, the calbrated model was applied to calculate the passenger car equivalents for heavy vehicles which represent the starting point for operational analysis of road and intersections.
Lingua originaleEnglish
Titolo della pubblicazione ospiteGenetic Algorithms: Advances in Research and Applications
Pagine59-112
Numero di pagine54
Stato di pubblicazionePublished - 2017

Serie di pubblicazioni

NomeCOMPUTER SCIENCE, TECHNOLOGY AND APPLICATIONS

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Computer Science(all)

Cita questo

Giuffre', O., Grana', A., Sferlazza, A., & Tumminello, M. L. (2017). Application of a Genetic Algorithm in Calibration of Traffic Microsimulation Models. In Genetic Algorithms: Advances in Research and Applications (pagg. 59-112). (COMPUTER SCIENCE, TECHNOLOGY AND APPLICATIONS).