Analisi fluidodinamica e sperimentale su una turbina Cross-Flow

Risultato della ricerca: Other

Abstract

L'energia idroelettrica è una forma di energia rinnovabile che oggi sta subendo un profondo processo di trasformazione passando da un sistema centralizzato di produzione ad un sistema di tipo distribuito. Tale processo ha dato un forte impulso alla costruzione di impianti di produzione idroelettrici su piccola scala. Questi impianti si possono realizzare: 1) lungo piccoli corsi d'acqua con piccoli salti disponibili, 2) alla fine di lunghe condotte di adduzione in corrispondenza della sezione di consegna ad un serbatoio cittadino, 3) nelle reti di distribuzione idriche dove il carico piezometrico in eccesso si dissipa con valvole di regolazione, 4) a valle di impianti di depurazione nel caso siano disponibili dei salti nella restituzione. Nel caso di reti idriche l'energia prodotta da questi piccoli impianti può essere utilizzata dal gestore per ridurre i costi energetici e dunque migliorare la gestione degli stessi. D'altra parte siffatte installazioni richiedono turbine e sistemi di controllo atti a mantenere buone efficienze di produzione al variare delle portate turbinate (Laghari et al. 2013). Viceversa, le apparecchiature tradizionali sono finalizzate a lavorare in grandi centrali con portate molto regolari ed il loro utilizzo non può essere facilmente adattato a sistemi mini e micro idroelettrici. Pertanto al fine di migliorare l'efficienza e ridurre i costi complessivi del mini idroelettrico, ricercatori e studiosi stanno analizzando la possibilità di utilizzare turbine idrauliche di nuova concezione, munite di dispositivi di controllo della portata e di sistemi per la regolazione elettrica della velocità di rotazione (Williams e Simpson, 2009; McAdam et al. 2013).Tra le micro turbine le Cross-Flow sono quelle che presentano un miglior rapporto qualità/prezzo, anche se hanno generalmente un'efficienza inferiore alle turbine Pelton e Francis. In questo studio viene presentato un lavoro sperimentale effettuato per testare le prestazioni di una turbina Cross-Flow economica e di alta efficienza, progettata seguendo un approccio teorico precedentemente sviluppato dagli stessi autori e verificato mediante una serie di simulazioni numeriche eseguite con il codice CFX-Ansys (Sammartano et al. 2013). La progettazione assume che il massimo rendimento della turbina si abbia quando la velocità relativa tangenziale Vt (Vcosα) è due volte la velocità di rotazione della girante U (R). Inoltre, la velocità in prossimità dell'ingresso della girante V è posta proporzionale alla radice quadrata del carico totale nella stessa sezione H, considerando un coefficiente di proporzionalità costante per data geometria Cv, così come evidenziato nell'equazione (1). I valori di Cv utilizzati di solito per questo approccio sono prossimi all'unità (Cv ≈ 0.98), come per le turbine Pelton o Turgo (Chattha et al. 2010, Zia et al. 2010). Tale approssimazione è però accettabile solo se la pressione assoluta in ingresso nella girante è prossima a quella atmosferica. Alcuni studi numerici hanno messo in evidenza che in prossimità della girante si hanno pressioni relative non nulle (Yang et al. 2010, De Andrade et al. 2011, Sammartano et al. 2013). L’analisi numerica di Sinagra et al. (2013) evidenzia che il Cv non è prossimo ad 1, ma ricade nel range 0.75 ÷ 0.85. Al fine di indagare nei riguardi dell'efficacia della procedura di progettazione e del coefficiente di velocità è stato progettato e costruito un prototipo di Cross-Flow presso il laboratorio dell'istituto INAF dell'Università di Palermo. Una serie di prove sperimentali sono state quindi condotte utilizza
Lingua originaleItalian
Numero di pagine2
Stato di pubblicazionePublished - 2014

Cita questo