Abstract
Abstract. Let Ω be a smooth, convex, unbounded domain of R N. Denote by μ1(Ω) the first nontrivial Neumann eigenvalue of the Hermite operator in Ω; we prove that μ1(Ω) ≥ 1. The result is sharp since equality sign is achieved when Ω is a N-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space H1(Ω, dγN), where γN is the N-dimensional Gaussian measure. © International Press 2013.
Lingua originale | English |
---|---|
pagine (da-a) | 449-457 |
Numero di pagine | 9 |
Rivista | Mathematical Research Letters |
Volume | 20 |
Stato di pubblicazione | Published - 2013 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2600???