An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability: Application to 24 h Holter recordings in healthy and heart failure humans

Luca Faes, Stefano Guzzetti, Luca Faes, Montano, Masé, D'Addio, D'Addio, Giandomenico Nollo, Alberto Porta, Furlan, Roberto Maestri, Gian Domenico Pinna, Malliani

Risultato della ricerca: Article

92 Citazioni (Scopus)

Abstract

We propose an integrated approach based on uniform quantization over a small number of levels for the evaluation and characterization of complexity of a process. This approach integrates information-domain analysis based on entropy rate, local nonlinear prediction, and pattern classification based on symbolic analysis. Normalized and non-normalized indexes quantifying complexity over short data sequences (â¼300 samples) are derived. This approach provides a rule for deciding the optimal length of the patterns that may be worth considering and some suggestions about possible strategies to group patterns into a smaller number of families. The approach is applied to 24 h Holter recordings of heart period variability derived from 12 normal (NO) subjects and 13 heart failure (HF) patients. We found that: (i) in NO subjects the normalized indexes suggest a larger complexity during the nighttime than during the daytime; (ii) this difference may be lost if non-normalized indexes are utilized; (iii) the circadian pattern in the normalized indexes is lost in HF patients; (iv) in HF patients the loss of the day-night variation in the normalized indexes is related to a tendency of complexity to increase during the daytime and to decrease during the nighttime; (v) the most likely length L of the most informative patterns ranges from 2 to 4; (vi) in NO subjects classification of patterns with L=3 indicates that stable patterns (i.e., those with no variations) are more present during the daytime, while highly variable patterns (i.e., those with two unlike variations) are more frequent during the nighttime; (vii) during the daytime in HF patients, the percentage of highly variable patterns increases with respect to NO subjects, while during the nighttime, the percentage of patterns with one or two like variations decreases. © 2007 American Institute of Physics.
Lingua originaleEnglish
Numero di pagine11
RivistaChaos
Volume17
Stato di pubblicazionePublished - 2007

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability: Application to 24 h Holter recordings in healthy and heart failure humans'. Insieme formano una fingerprint unica.

  • Cita questo

    Faes, L., Guzzetti, S., Faes, L., Montano, Masé, D'Addio, D'Addio, Nollo, G., Porta, A., Furlan, Maestri, R., Pinna, G. D., & Malliani (2007). An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability: Application to 24 h Holter recordings in healthy and heart failure humans. Chaos, 17.