An innovative similarity measure for sentence plagiarism detection

Giorgio Vassallo, Alfredo Cuzzocrea, Agnese Augello, Giovanni Pilato, Carmelo Spiccia

Risultato della ricerca: Chapter

2 Citazioni (Scopus)

Abstract

We propose and experimentally assess Semantic Word Error Rate (SWER), an innovative similarity measure for sentence plagiarism detection. SWER introduces a complex approach based on latent semantic analysis, which is capable of outperforming the accuracy of competitor methods in plagiarism detection. We provide principles and functionalities of SWER, and we complement our analytical contribution by means of a significant preliminary experimental analysis. Derived results are promising, and confirm to use the goodness of our proposal.
Lingua originaleEnglish
Titolo della pubblicazione ospiteLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pagine552-566
Numero di pagine15
Stato di pubblicazionePublished - 2016

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • ???subjectarea.asjc.1700.1700???

Fingerprint Entra nei temi di ricerca di 'An innovative similarity measure for sentence plagiarism detection'. Insieme formano una fingerprint unica.

Cita questo