An heuristic approach for the training dataset selection in fingerprint classification tasks

Giuseppe Vitello, Filippo Sorbello, Salvatore Vitabile, Giuseppe Vitello, Vincenzo Conti

Risultato della ricerca: Chapter

Abstract

Fingerprint classification is a key issue in automatic fingerprint identification systems. It aims to reduce the item search time within the fingerprint database without affecting the accuracy rate. In this paper an heuristic approach using only the directional image information for the training dataset selection in fingerprint classification tasks is described. The method combines a Fuzzy C-Means clustering method and a Naive Bayes Classifier and it is composed of three modules: the first module builds the working datasets, the second module extracts the training images dataset and, finally, the third module classifies fingerprint images in four classes. Unlike literature approaches using a lot of training examples, the proposed approach requires only 18 directional images per class. Experimental results, conducted on a consistent subset of the free downloadable PolyU database, show a classification rate of 87.59%.
Lingua originaleEnglish
Titolo della pubblicazione ospiteSmart Innovation, Systems and Technologies
Pagine217-227
Numero di pagine11
Stato di pubblicazionePublished - 2015

All Science Journal Classification (ASJC) codes

  • ???subjectarea.asjc.1800.1800???
  • ???subjectarea.asjc.1700.1700???

Fingerprint Entra nei temi di ricerca di 'An heuristic approach for the training dataset selection in fingerprint classification tasks'. Insieme formano una fingerprint unica.

Cita questo