Air quality assessment via functional principal component analysis

Risultato della ricerca: Other

Abstract

The knowledge of the global urban air quality situation represents the first step to face air pollution issues.For the last decades many urban areas can rely on a monitoring network, recording hourly data for the mainpollutants. Such data need to be aggregated according to different dimensions, such as time, space and typeof pollutant, in order to provide a synthetic air quality index which takes into account interactions amongpollutants and correlation among monitoring sites.This paper focuses on Functional Principal Componenttechniques for the statistical analysis of a set of environmental data x(spt), where s stands for the monitoringsite, p for the pollutant and t for time, usually days (after the aggregation according to national agencyguidelines). This approach could highlight some relevant statistical features of time series from an explorativepoint of view, and, consequently, new opportunities to obtain a synthetic AQI. The analysis will be illustratedby considering the data concerning the daily values of the 5 main pollutants collected in Palermo during 2006.
Lingua originaleEnglish
Numero di pagine0
Stato di pubblicazionePublished - 2009

Fingerprint Entra nei temi di ricerca di 'Air quality assessment via functional principal component analysis'. Insieme formano una fingerprint unica.

Cita questo