Abelian antipowers in infinite words

Gabriele Fici, Manuel Silva, Mickael Postic

Risultato della ricerca: Articlepeer review

2 Citazioni (Scopus)

Abstract

An abelian antipower of order k (or simply an abelian k-antipower) is a concatenation of k consecutive words of the same length having pairwise distinct Parikh vectors. This definition generalizes to the abelian setting the notion of a k-antipower, as introduced in Fici et al. (2018) [7], that is a concatenation of k pairwise distinct words of the same length. We aim to study whether a word contains abelian k-antipowers for arbitrarily large k. Š. Holub proved that all paperfolding words contain abelian powers of every order (Holub, 2013 [8]). We show that they also contain abelian antipowers of every order
Lingua originaleEnglish
pagine (da-a)67-78
Numero di pagine12
RivistaAdvances in Applied Mathematics
Volume108
Stato di pubblicazionePublished - 2019

All Science Journal Classification (ASJC) codes

  • Applied Mathematics

Fingerprint Entra nei temi di ricerca di 'Abelian antipowers in infinite words'. Insieme formano una fingerprint unica.

Cita questo