A systematic review of animal models for experimental neuroma

Francesca Toia, Thomas Giesen, Maurizio Calcagni, Pietro Giovanoli

Risultato della ricerca: Article

7 Citazioni (Scopus)

Abstract

Summary Peripheral neuromas can result in an unbearable neuropathic pain and functional impairment. Their treatment is still challenging, and their optimal management is to be defined. Experimental research still plays a major role, but - although numerous neuroma models have been proposed on different animals - there is still no single model recognised as being the reference. Several models show advantages over the others in specific aspects of neuroma physiopathology, prevention or treatment, making it unlikely that a single model could be of reference. A reproducible and standardised model of peripheral neuroma would allow better comparison of results from different studies. We present a systematic review of the literature on experimental in vivo models, analysing advantages and disadvantages, specific features and indications, with the goal of providing suggestions to help their standardisation. Published models greatly differ in the animal and the nerve employed, the mechanisms of nerve injury and the evaluation methods. Specific experimental models exist for terminal neuromas and neuromas in continuity (NIC). The rat is the most widely employed animal, the rabbit being the second most popular model. NIC models are more actively researched, but it is more difficult to generate such studies in a reproducible manner. Nerve transection is considered the best method to cause terminal neuromas, whereas partial transection is the best method to cause NIC. Traditional histomorphology is the historical gold-standard evaluation method, but immunolabelling, reverse transcriptase-polymerase chain reaction (RT-PCR) and proteomics are gaining increasing popularity. Computerised gait analysis is the gold standard for motor-recovery evaluation, whereas mechanical testing of allodynia and hyperalgesia reproducibly assesses sensory recovery. This review summarises current knowledge on experimental neuroma models, and it provides a useful tool for defining experimental protocols. Furthermore, it could help future research to define standard experimental model(s) of peripheral neuromas, allowing better comparison of results and improvement of our understanding of such a complex disease.
Lingua originaleEnglish
pagine (da-a)1447-1463
Numero di pagine17
RivistaJOURNAL OF PLASTIC, RECONSTRUCTIVE & AESTHETIC SURGERY
Volume68
Stato di pubblicazionePublished - 2015

Fingerprint

Neuroma
Animal Models
Theoretical Models
Hyperalgesia
Neuralgia
Reverse Transcriptase Polymerase Chain Reaction
Gait
Gold
Proteomics

All Science Journal Classification (ASJC) codes

  • Surgery

Cita questo

A systematic review of animal models for experimental neuroma. / Toia, Francesca; Giesen, Thomas; Calcagni, Maurizio; Giovanoli, Pietro.

In: JOURNAL OF PLASTIC, RECONSTRUCTIVE & AESTHETIC SURGERY, Vol. 68, 2015, pag. 1447-1463.

Risultato della ricerca: Article

Toia, Francesca ; Giesen, Thomas ; Calcagni, Maurizio ; Giovanoli, Pietro. / A systematic review of animal models for experimental neuroma. In: JOURNAL OF PLASTIC, RECONSTRUCTIVE & AESTHETIC SURGERY. 2015 ; Vol. 68. pagg. 1447-1463.
@article{a381ab329a7043da8ae04834fc858b56,
title = "A systematic review of animal models for experimental neuroma",
abstract = "Summary Peripheral neuromas can result in an unbearable neuropathic pain and functional impairment. Their treatment is still challenging, and their optimal management is to be defined. Experimental research still plays a major role, but - although numerous neuroma models have been proposed on different animals - there is still no single model recognised as being the reference. Several models show advantages over the others in specific aspects of neuroma physiopathology, prevention or treatment, making it unlikely that a single model could be of reference. A reproducible and standardised model of peripheral neuroma would allow better comparison of results from different studies. We present a systematic review of the literature on experimental in vivo models, analysing advantages and disadvantages, specific features and indications, with the goal of providing suggestions to help their standardisation. Published models greatly differ in the animal and the nerve employed, the mechanisms of nerve injury and the evaluation methods. Specific experimental models exist for terminal neuromas and neuromas in continuity (NIC). The rat is the most widely employed animal, the rabbit being the second most popular model. NIC models are more actively researched, but it is more difficult to generate such studies in a reproducible manner. Nerve transection is considered the best method to cause terminal neuromas, whereas partial transection is the best method to cause NIC. Traditional histomorphology is the historical gold-standard evaluation method, but immunolabelling, reverse transcriptase-polymerase chain reaction (RT-PCR) and proteomics are gaining increasing popularity. Computerised gait analysis is the gold standard for motor-recovery evaluation, whereas mechanical testing of allodynia and hyperalgesia reproducibly assesses sensory recovery. This review summarises current knowledge on experimental neuroma models, and it provides a useful tool for defining experimental protocols. Furthermore, it could help future research to define standard experimental model(s) of peripheral neuromas, allowing better comparison of results and improvement of our understanding of such a complex disease.",
author = "Francesca Toia and Thomas Giesen and Maurizio Calcagni and Pietro Giovanoli",
year = "2015",
language = "English",
volume = "68",
pages = "1447--1463",
journal = "JOURNAL OF PLASTIC, RECONSTRUCTIVE & AESTHETIC SURGERY",
issn = "1748-6815",

}

TY - JOUR

T1 - A systematic review of animal models for experimental neuroma

AU - Toia, Francesca

AU - Giesen, Thomas

AU - Calcagni, Maurizio

AU - Giovanoli, Pietro

PY - 2015

Y1 - 2015

N2 - Summary Peripheral neuromas can result in an unbearable neuropathic pain and functional impairment. Their treatment is still challenging, and their optimal management is to be defined. Experimental research still plays a major role, but - although numerous neuroma models have been proposed on different animals - there is still no single model recognised as being the reference. Several models show advantages over the others in specific aspects of neuroma physiopathology, prevention or treatment, making it unlikely that a single model could be of reference. A reproducible and standardised model of peripheral neuroma would allow better comparison of results from different studies. We present a systematic review of the literature on experimental in vivo models, analysing advantages and disadvantages, specific features and indications, with the goal of providing suggestions to help their standardisation. Published models greatly differ in the animal and the nerve employed, the mechanisms of nerve injury and the evaluation methods. Specific experimental models exist for terminal neuromas and neuromas in continuity (NIC). The rat is the most widely employed animal, the rabbit being the second most popular model. NIC models are more actively researched, but it is more difficult to generate such studies in a reproducible manner. Nerve transection is considered the best method to cause terminal neuromas, whereas partial transection is the best method to cause NIC. Traditional histomorphology is the historical gold-standard evaluation method, but immunolabelling, reverse transcriptase-polymerase chain reaction (RT-PCR) and proteomics are gaining increasing popularity. Computerised gait analysis is the gold standard for motor-recovery evaluation, whereas mechanical testing of allodynia and hyperalgesia reproducibly assesses sensory recovery. This review summarises current knowledge on experimental neuroma models, and it provides a useful tool for defining experimental protocols. Furthermore, it could help future research to define standard experimental model(s) of peripheral neuromas, allowing better comparison of results and improvement of our understanding of such a complex disease.

AB - Summary Peripheral neuromas can result in an unbearable neuropathic pain and functional impairment. Their treatment is still challenging, and their optimal management is to be defined. Experimental research still plays a major role, but - although numerous neuroma models have been proposed on different animals - there is still no single model recognised as being the reference. Several models show advantages over the others in specific aspects of neuroma physiopathology, prevention or treatment, making it unlikely that a single model could be of reference. A reproducible and standardised model of peripheral neuroma would allow better comparison of results from different studies. We present a systematic review of the literature on experimental in vivo models, analysing advantages and disadvantages, specific features and indications, with the goal of providing suggestions to help their standardisation. Published models greatly differ in the animal and the nerve employed, the mechanisms of nerve injury and the evaluation methods. Specific experimental models exist for terminal neuromas and neuromas in continuity (NIC). The rat is the most widely employed animal, the rabbit being the second most popular model. NIC models are more actively researched, but it is more difficult to generate such studies in a reproducible manner. Nerve transection is considered the best method to cause terminal neuromas, whereas partial transection is the best method to cause NIC. Traditional histomorphology is the historical gold-standard evaluation method, but immunolabelling, reverse transcriptase-polymerase chain reaction (RT-PCR) and proteomics are gaining increasing popularity. Computerised gait analysis is the gold standard for motor-recovery evaluation, whereas mechanical testing of allodynia and hyperalgesia reproducibly assesses sensory recovery. This review summarises current knowledge on experimental neuroma models, and it provides a useful tool for defining experimental protocols. Furthermore, it could help future research to define standard experimental model(s) of peripheral neuromas, allowing better comparison of results and improvement of our understanding of such a complex disease.

UR - http://hdl.handle.net/10447/207370

UR - http://www.elsevier.com

M3 - Article

VL - 68

SP - 1447

EP - 1463

JO - JOURNAL OF PLASTIC, RECONSTRUCTIVE & AESTHETIC SURGERY

JF - JOURNAL OF PLASTIC, RECONSTRUCTIVE & AESTHETIC SURGERY

SN - 1748-6815

ER -