A Synthetic Derivative of Antimicrobial Peptide Holothuroidin 2 from Mediterranean Sea Cucumber (Holothuria tubulosa) in the Control of Listeria monocytogenes

Risultato della ricerca: Article

1 Citazione (Scopus)

Abstract

Due to the limited number of available antibiotics, antimicrobial peptides (AMPs) are considered antimicrobial candidates to fight difficult-to-treat infections such as those associated with biofilms. Marine environments are precious sources of AMPs, as shown by the recent discovery of antibiofilm properties of Holothuroidin 2 (H2), an AMP produced by the Mediterranean sea cucumber Holothuria tubulosa. In this study, we considered the properties of a new H2 derivative, named H2d, and we tested it against seven strains of the dangerous foodborne pathogen Listeria monocytogenes. This peptide was more active than H2 in inhibiting the growth of planktonic L. monocytogenes and was able to interfere with biofilm formation at sub-minimum inhibitory concentrations (MICs). Atomic-level molecular dynamics (MD) simulations revealed insights related to the enhanced inhibitory activity of H2d, showing that the peptide is characterized by a more defined tertiary structure with respect to its ancestor. This allows the peptide to better exhibit an amphipathic character, which is an essential requirement for the interaction with cell membranes, similarly to other AMPs. Altogether, these results support the potential use of our synthetic peptide, H2d, as a template for the development of novel AMP-based drugs able to fight foodborne that are resistant to conventional antibiotics.
Lingua originaleEnglish
pagine (da-a)159-
Numero di pagine11
RivistaMarine Drugs
Volume17
Stato di pubblicazionePublished - 2019

Fingerprint

Holothuria
Sea Cucumbers
Mediterranean Sea
Listeria monocytogenes
Peptides
Biofilms
Anti-Bacterial Agents
Microbial Sensitivity Tests
Molecular Dynamics Simulation

All Science Journal Classification (ASJC) codes

  • Drug Discovery

Cita questo

@article{25f8cea011044e6aa1087acc6e6b292c,
title = "A Synthetic Derivative of Antimicrobial Peptide Holothuroidin 2 from Mediterranean Sea Cucumber (Holothuria tubulosa) in the Control of Listeria monocytogenes",
abstract = "Due to the limited number of available antibiotics, antimicrobial peptides (AMPs) are considered antimicrobial candidates to fight difficult-to-treat infections such as those associated with biofilms. Marine environments are precious sources of AMPs, as shown by the recent discovery of antibiofilm properties of Holothuroidin 2 (H2), an AMP produced by the Mediterranean sea cucumber Holothuria tubulosa. In this study, we considered the properties of a new H2 derivative, named H2d, and we tested it against seven strains of the dangerous foodborne pathogen Listeria monocytogenes. This peptide was more active than H2 in inhibiting the growth of planktonic L. monocytogenes and was able to interfere with biofilm formation at sub-minimum inhibitory concentrations (MICs). Atomic-level molecular dynamics (MD) simulations revealed insights related to the enhanced inhibitory activity of H2d, showing that the peptide is characterized by a more defined tertiary structure with respect to its ancestor. This allows the peptide to better exhibit an amphipathic character, which is an essential requirement for the interaction with cell membranes, similarly to other AMPs. Altogether, these results support the potential use of our synthetic peptide, H2d, as a template for the development of novel AMP-based drugs able to fight foodborne that are resistant to conventional antibiotics.",
author = "Vincenzo Arizza and Domenico Schillaci and Cusimano, {Maria Grazia} and Giampaolo Barone and Angelo Spinello and Cascioferro, {Stella Maria} and Barbara Parrino and Maria Vitale and Angelo Spinello and Alessandra Magistrato",
year = "2019",
language = "English",
volume = "17",
pages = "159--",
journal = "Marine Drugs",
issn = "1660-3397",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",

}

TY - JOUR

T1 - A Synthetic Derivative of Antimicrobial Peptide Holothuroidin 2 from Mediterranean Sea Cucumber (Holothuria tubulosa) in the Control of Listeria monocytogenes

AU - Arizza, Vincenzo

AU - Schillaci, Domenico

AU - Cusimano, Maria Grazia

AU - Barone, Giampaolo

AU - Spinello, Angelo

AU - Cascioferro, Stella Maria

AU - Parrino, Barbara

AU - Vitale, Maria

AU - Spinello, Angelo

AU - Magistrato, Alessandra

PY - 2019

Y1 - 2019

N2 - Due to the limited number of available antibiotics, antimicrobial peptides (AMPs) are considered antimicrobial candidates to fight difficult-to-treat infections such as those associated with biofilms. Marine environments are precious sources of AMPs, as shown by the recent discovery of antibiofilm properties of Holothuroidin 2 (H2), an AMP produced by the Mediterranean sea cucumber Holothuria tubulosa. In this study, we considered the properties of a new H2 derivative, named H2d, and we tested it against seven strains of the dangerous foodborne pathogen Listeria monocytogenes. This peptide was more active than H2 in inhibiting the growth of planktonic L. monocytogenes and was able to interfere with biofilm formation at sub-minimum inhibitory concentrations (MICs). Atomic-level molecular dynamics (MD) simulations revealed insights related to the enhanced inhibitory activity of H2d, showing that the peptide is characterized by a more defined tertiary structure with respect to its ancestor. This allows the peptide to better exhibit an amphipathic character, which is an essential requirement for the interaction with cell membranes, similarly to other AMPs. Altogether, these results support the potential use of our synthetic peptide, H2d, as a template for the development of novel AMP-based drugs able to fight foodborne that are resistant to conventional antibiotics.

AB - Due to the limited number of available antibiotics, antimicrobial peptides (AMPs) are considered antimicrobial candidates to fight difficult-to-treat infections such as those associated with biofilms. Marine environments are precious sources of AMPs, as shown by the recent discovery of antibiofilm properties of Holothuroidin 2 (H2), an AMP produced by the Mediterranean sea cucumber Holothuria tubulosa. In this study, we considered the properties of a new H2 derivative, named H2d, and we tested it against seven strains of the dangerous foodborne pathogen Listeria monocytogenes. This peptide was more active than H2 in inhibiting the growth of planktonic L. monocytogenes and was able to interfere with biofilm formation at sub-minimum inhibitory concentrations (MICs). Atomic-level molecular dynamics (MD) simulations revealed insights related to the enhanced inhibitory activity of H2d, showing that the peptide is characterized by a more defined tertiary structure with respect to its ancestor. This allows the peptide to better exhibit an amphipathic character, which is an essential requirement for the interaction with cell membranes, similarly to other AMPs. Altogether, these results support the potential use of our synthetic peptide, H2d, as a template for the development of novel AMP-based drugs able to fight foodborne that are resistant to conventional antibiotics.

UR - http://hdl.handle.net/10447/349767

M3 - Article

VL - 17

SP - 159-

JO - Marine Drugs

JF - Marine Drugs

SN - 1660-3397

ER -