Abstract
Event detection is a fundamental yet critical component in automatic speech recognition (ASR) systems that attempt to extract knowledge-based features at the front-end level. In this context, it is common practice to design the detectors inside well-known frameworks based on artificial neural network (ANN) or support vector machine (SVM). In the case of ANN, speech scientists often design their detector architecture relying on conventional feed-forward multi-layer perceptron (MLP) with sigmoidal activation function. The aim of this paper is to introduce other ANN architectures inside the context of detection-based ASR. In particular, a bank of feed-forward MLPs using sinusoidal activation functions is set up to address the event detection problem. Experimental results demonstrate the effectiveness of this ANN design for speech attribute detectors.
Lingua originale | English |
---|---|
Pagine | 805-808 |
Numero di pagine | 4 |
Stato di pubblicazione | Published - 2006 |
All Science Journal Classification (ASJC) codes
- Software
- Signal Processing
- Electrical and Electronic Engineering