A Riemann-type integral on a measure space

Riccobono G

Risultato della ricerca: Article

Abstract

In a compact Hausdorff measure space we define an integral by partitions of the unity and prove that it is nonabsolutely convergent.
Lingua originaleEnglish
pagine (da-a)329-338
RivistaReal Analysis Exchange
Volume30(1)
Stato di pubblicazionePublished - 2005

Fingerprint

Hausdorff Measure
Measure space
Partition

Cita questo

A Riemann-type integral on a measure space. / Riccobono G.

In: Real Analysis Exchange, Vol. 30(1), 2005, pag. 329-338.

Risultato della ricerca: Article

Riccobono G 2005, 'A Riemann-type integral on a measure space', Real Analysis Exchange, vol. 30(1), pagg. 329-338.
Riccobono G. / A Riemann-type integral on a measure space. In: Real Analysis Exchange. 2005 ; Vol. 30(1). pagg. 329-338.
@article{e737e1a6300043f8a0255f4da5d5074d,
title = "A Riemann-type integral on a measure space",
abstract = "In a compact Hausdorff measure space we define an integral by partitions of the unity and prove that it is nonabsolutely convergent.",
author = "{Riccobono G} and Giuseppa Riccobono",
year = "2005",
language = "English",
volume = "30(1)",
pages = "329--338",
journal = "Real Analysis Exchange",
issn = "0147-1937",
publisher = "Michigan State University Press",

}

TY - JOUR

T1 - A Riemann-type integral on a measure space

AU - Riccobono G

AU - Riccobono, Giuseppa

PY - 2005

Y1 - 2005

N2 - In a compact Hausdorff measure space we define an integral by partitions of the unity and prove that it is nonabsolutely convergent.

AB - In a compact Hausdorff measure space we define an integral by partitions of the unity and prove that it is nonabsolutely convergent.

UR - http://hdl.handle.net/10447/24217

M3 - Article

VL - 30(1)

SP - 329

EP - 338

JO - Real Analysis Exchange

JF - Real Analysis Exchange

SN - 0147-1937

ER -