Abstract
Let Omega subset of R-2 be a bounded domain with the same area as the unit disk B-1 and letE-epsilon(u, Omega) = 1/2 integral(Omega) vertical bar del u vertical bar(2) dx + 1/4 epsilon(2) integral(Omega) (vertical bar u vertical bar(2) - 1)(2) dxbe the Ginzburg-Landau functional. Denote by (u) over tilde (epsilon) the radial solution to the Euler equation associated to the problem min {E-epsilon (u, B-1) : u vertical bar(partial derivative B1) = x} and byK = {v = (v(1), v(2)) is an element of H-1 (Omega; R-2) : integral(Omega) v(1) dx = integral(Omega) v(2) dx = 0,integral(Omega) vertical bar v vertical bar(2) dx >= integral(B1) vertical bar(u) over tilde vertical bar(2) dx}.In this note we prove thatmin(v is an element of K) E-epsilon (v, Omega) <= E-epsilon ((u) over tilde, B-1).
Lingua originale | English |
---|---|
pagine (da-a) | 1-4 |
Numero di pagine | 4 |
Rivista | Electronic Journal of Differential Equations |
Volume | 224 |
Stato di pubblicazione | Published - 2014 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2603???