A Quantitative Analysis of Metrics on Rn with Almost Constant Positive Scalar Curvature, with Applications to Fast Diffusion Flows

Giulio Ciraolo, Alessio Figalli, Francesco Maggi

Risultato della ricerca: Article

3 Citazioni (Scopus)

Abstract

We prove a quantitative structure theorem for metrics on R^n that are conformal to the flat metric, have almost constant positive scalar curvature, and cannot concentrate more than one bubble. As an application of our result, we show a quantitative rate of convergence in relative entropy for a fast diffusion equation in R^n related to the Yamabe flow.
Lingua originaleEnglish
Numero di pagine18
RivistaInternational Mathematics Research Notices
Stato di pubblicazionePublished - 2017

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Fingerprint Entra nei temi di ricerca di 'A Quantitative Analysis of Metrics on Rn with Almost Constant Positive Scalar Curvature, with Applications to Fast Diffusion Flows'. Insieme formano una fingerprint unica.

  • Cita questo