A procedure to evaluate coincidence-summing correction values in gamma-ray spectrometry with HPGe detectors

Risultato della ricerca: Paper

Abstract

The spectrometric analysis of a gamma-emitter sample measured in "close geometry" can be affected by errors due to coincidence-summing effects that can occur when two or more coincident photons (real coincidences) within the resolution time of the spectrometric system are emitted. The probability that these effects occur depends primarily on the nuclide decay scheme, the sample-detector distance and detector intrinsic-efficiency whereas results independent from the sample nuclide activity. Coincidence-summing corrections of the photopeak areas are requested, in particular, when the gamma ray spectrometric analysis is aimed to efficiency or activity determination. In this work is reported a fast and simple procedure to evaluate true coincidence-summing correction values for point sources. Two HPGe detectors and various source-end cap distance were considered. The values are referred to main emission energies of some nuclides chosen among the most used calibration isotopes, fission products, activation products and environmental isotopes. The values of correction factors were quickly get by using coincidences expressions that involve only the knowledge of Full-Energy-Peak Efficiency (FEPE) and Total Efficiency (TE) values or suitable calibration curves. The FEPE and TE trends were determined by using 4th order log-log polynomial fits of experimental measurements of "single line" point sources, i.e. sources showing a single gamma emission, furnished by CEA. Alternatively, experimental Total-to Peak ratios can be also considered. Finally, in order to assess the errors in other geometries a suitable application of the known “efficiency transfer method” was used and validated by means of a comparison with experimental determinations.
Lingua originaleEnglish
Stato di pubblicazionePublished - 2009

Fingerprint

gamma rays
detectors
spectroscopy
nuclides
point sources
isotopes
photopeak
fission products
geometry
caps
energy
polynomials
emitters
activation
trends
photons
decay
curves
products

Cita questo

@conference{52da74fec0344c2b949f43f6b5c2e0c1,
title = "A procedure to evaluate coincidence-summing correction values in gamma-ray spectrometry with HPGe detectors",
abstract = "The spectrometric analysis of a gamma-emitter sample measured in {"}close geometry{"} can be affected by errors due to coincidence-summing effects that can occur when two or more coincident photons (real coincidences) within the resolution time of the spectrometric system are emitted. The probability that these effects occur depends primarily on the nuclide decay scheme, the sample-detector distance and detector intrinsic-efficiency whereas results independent from the sample nuclide activity. Coincidence-summing corrections of the photopeak areas are requested, in particular, when the gamma ray spectrometric analysis is aimed to efficiency or activity determination. In this work is reported a fast and simple procedure to evaluate true coincidence-summing correction values for point sources. Two HPGe detectors and various source-end cap distance were considered. The values are referred to main emission energies of some nuclides chosen among the most used calibration isotopes, fission products, activation products and environmental isotopes. The values of correction factors were quickly get by using coincidences expressions that involve only the knowledge of Full-Energy-Peak Efficiency (FEPE) and Total Efficiency (TE) values or suitable calibration curves. The FEPE and TE trends were determined by using 4th order log-log polynomial fits of experimental measurements of {"}single line{"} point sources, i.e. sources showing a single gamma emission, furnished by CEA. Alternatively, experimental Total-to Peak ratios can be also considered. Finally, in order to assess the errors in other geometries a suitable application of the known “efficiency transfer method” was used and validated by means of a comparison with experimental determinations.",
keywords = "coincidence-summing; gamma-ray spectrometry; HPge detectors",
author = "Salvatore Rizzo and Tomarchio, {Elio Angelo}",
year = "2009",
language = "English",

}

TY - CONF

T1 - A procedure to evaluate coincidence-summing correction values in gamma-ray spectrometry with HPGe detectors

AU - Rizzo, Salvatore

AU - Tomarchio, Elio Angelo

PY - 2009

Y1 - 2009

N2 - The spectrometric analysis of a gamma-emitter sample measured in "close geometry" can be affected by errors due to coincidence-summing effects that can occur when two or more coincident photons (real coincidences) within the resolution time of the spectrometric system are emitted. The probability that these effects occur depends primarily on the nuclide decay scheme, the sample-detector distance and detector intrinsic-efficiency whereas results independent from the sample nuclide activity. Coincidence-summing corrections of the photopeak areas are requested, in particular, when the gamma ray spectrometric analysis is aimed to efficiency or activity determination. In this work is reported a fast and simple procedure to evaluate true coincidence-summing correction values for point sources. Two HPGe detectors and various source-end cap distance were considered. The values are referred to main emission energies of some nuclides chosen among the most used calibration isotopes, fission products, activation products and environmental isotopes. The values of correction factors were quickly get by using coincidences expressions that involve only the knowledge of Full-Energy-Peak Efficiency (FEPE) and Total Efficiency (TE) values or suitable calibration curves. The FEPE and TE trends were determined by using 4th order log-log polynomial fits of experimental measurements of "single line" point sources, i.e. sources showing a single gamma emission, furnished by CEA. Alternatively, experimental Total-to Peak ratios can be also considered. Finally, in order to assess the errors in other geometries a suitable application of the known “efficiency transfer method” was used and validated by means of a comparison with experimental determinations.

AB - The spectrometric analysis of a gamma-emitter sample measured in "close geometry" can be affected by errors due to coincidence-summing effects that can occur when two or more coincident photons (real coincidences) within the resolution time of the spectrometric system are emitted. The probability that these effects occur depends primarily on the nuclide decay scheme, the sample-detector distance and detector intrinsic-efficiency whereas results independent from the sample nuclide activity. Coincidence-summing corrections of the photopeak areas are requested, in particular, when the gamma ray spectrometric analysis is aimed to efficiency or activity determination. In this work is reported a fast and simple procedure to evaluate true coincidence-summing correction values for point sources. Two HPGe detectors and various source-end cap distance were considered. The values are referred to main emission energies of some nuclides chosen among the most used calibration isotopes, fission products, activation products and environmental isotopes. The values of correction factors were quickly get by using coincidences expressions that involve only the knowledge of Full-Energy-Peak Efficiency (FEPE) and Total Efficiency (TE) values or suitable calibration curves. The FEPE and TE trends were determined by using 4th order log-log polynomial fits of experimental measurements of "single line" point sources, i.e. sources showing a single gamma emission, furnished by CEA. Alternatively, experimental Total-to Peak ratios can be also considered. Finally, in order to assess the errors in other geometries a suitable application of the known “efficiency transfer method” was used and validated by means of a comparison with experimental determinations.

KW - coincidence-summing; gamma-ray spectrometry; HPge detectors

UR - http://hdl.handle.net/10447/48665

M3 - Paper

ER -