Abstract
The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.
Lingua originale | English |
---|---|
pagine (da-a) | 1551-1561 |
Numero di pagine | 11 |
Rivista | Numerical Functional Analysis and Optimization |
Volume | 37 |
Stato di pubblicazione | Published - 2016 |
All Science Journal Classification (ASJC) codes
- ???subjectarea.asjc.2600.2603???
- ???subjectarea.asjc.1700.1711???
- ???subjectarea.asjc.1700.1706???
- ???subjectarea.asjc.2600.2606???