A one class KNN for signal identification: a biological case study

Risultato della ricerca: Articlepeer review

Abstract

The paper describes an application of a one class KNN to identifydifferent signal patterns embedded in a noise structured background. Theproblem becomes harder whenever only one pattern is well-represented in thesignal; in such cases, one class classifier techniques are more indicated. Theclassification phase is applied after a preprocessing phase based on a multilayer model (MLM) that provides preliminary signal segmentation in an intervalfeature space. The one class KNN has been tested on synthetic and real(Saccharomyces cerevisiae) microarray data in the specific problem of DNAnucleosome and linker regions identification. Results have shown, in bothcases, a good recognition rate.
Lingua originaleEnglish
pagine (da-a)376-389
Numero di pagine13
RivistaINTERNATIONAL JOURNAL OF KNOWLEDGE ENGINEERING AND SOFT DATA PARADIGMS
Volume1
Stato di pubblicazionePublished - 2009

Fingerprint

Entra nei temi di ricerca di 'A one class KNN for signal identification: a biological case study'. Insieme formano una fingerprint unica.

Cita questo