A one class classifier for Signal identification: a biological case study

Risultato della ricerca: Conference contribution

6 Citazioni (Scopus)

Abstract

The paper describes an application of a one-class KNN to identify different signal patterns embedded in a noise structured background. The problem become harder whenever only one pattern is well represented in the signal, in such cases one class classifier techniques are more indicated. The classification phase is applied after a preprocessing phase based on a Multi Layer Model (MLM) that provides a preliminary signal segmentation in an interval feature space. The one-class KNN has been tested on synthetic data that simulate microarray data for the identification of nucleosomes and linker regions across DNA. Results have shown a good recognition rate on synthetic data for nucleosome and linker regions.
Lingua originaleEnglish
Titolo della pubblicazione ospiteKnowledge-Based Intelligent Information and Engineering Systems, 12th International Conference, KES 2008, Zagreb, Croatia, September 3-5, 2008, Proceedings, Part III
Pagine747-754
Numero di pagine6
Stato di pubblicazionePublished - 2008

Serie di pubblicazioni

NomeLECTURE NOTES IN COMPUTER SCIENCE

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Entra nei temi di ricerca di 'A one class classifier for Signal identification: a biological case study'. Insieme formano una fingerprint unica.

  • Cita questo

    Lo Bosco, G., Di Gesu', V., & Pinello, L. (2008). A one class classifier for Signal identification: a biological case study. In Knowledge-Based Intelligent Information and Engineering Systems, 12th International Conference, KES 2008, Zagreb, Croatia, September 3-5, 2008, Proceedings, Part III (pagg. 747-754). (LECTURE NOTES IN COMPUTER SCIENCE).